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Neutron stars

 Compact objects — radius around 10km for 1.4 MSUN (1.5 — 4. times the
radius of a BH)

* Density in the cores 3-5 x nuclear matter density

A NEUTRON STAR: SURFACE and INTERIOR
‘Swiss “Spaghetti®

NSs are great
tools to study
dense matter
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Danny Page (UNAM) https://www.nupecc.org/lrp2016/Documents/lrp2017.pdf
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FIG. 2. Distributions of entropy per baryon S/A (upper color maps) and temperature 7 (lower color maps) for a BNSM (NS + NS)
with total mass M, = 2.8 M, (top panels) and a Au + Au HIC at E;,, = 450AMeV (bottom panels). Colored lines mark density
contours in units of ng,. The snapshots in different rows refer to t = —2,0, +3 ms before and after merger for the BNSM, respectively,
and to t = —5,0, +5,fm/c before and after the full overlap for the HIC.
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FIG. 2. Distributions of entropy per baryon S/A (upper color maps) and temperature 7' (lower color maps) for a BNSM (NS + NS)
with total mass M, = 2.8 M, (top panels) and a Au + Au HIC at E;,, = 450AMeV (bottom panels). Colored lines mark density
contours in units of ng,. The snapshots in different rows refer to t = —2,0, +3 ms before and after merger for the BNSM, respectively,
and to t = —5,0, +5,fm/c before and after the full overlap for the HIC.



Neutron star matter S [ A
« Atmosphere (~¥10 cm) T P [
* On top of the ocean 2 It
" Mostly gas N 00 0B
e Ocean (1-100 m) b ’ s,
g™ n— .

* Iron (isolated NS)
* H, He (accreting NS)

e Crust (1 km)
e Outer crust (ionized atoms)
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* Neutron drip 4.3x10* g.cm™ i :
2 PS40 9 o
* Inner crust i
. . oy 5§
* Nuclei are very neutron rich — clusters 8| §i E
HFl 27 (R > Eiy

* Free neutrons may be superfluid

* Pasta on the bottom (mantle) Ascenzi, S.; Graber, V.; Rea N.: Astroparticle Physics, 2024
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Neutron star matter Rk |
* Core (~10 km) T e A ) 7, ‘
* Starts at about % of saturation density =2.8x10%* g.cm™ 3 AT """"" i’
* n,p,e in B-equilibrium (and charge neutrality) 23" L e - )
‘g 1/8 n. 2: g %g__:. '-.-~-~-;.....;...L.;.__..;....__;.....-.---o ---- o
* Possible Bose-Einstein condensates (pion, kaon) 3* L Sl ° - ,
e Quark-gluon plasma LF z ----- _ B
* Largely unknow matter but has a huge impact on neutron § w :
star properties ] -
* Description of matter transfers to equation of state = | i [N SN - 5|
— combination of corresponding values of density, 79 » _z
F1 85 S > Eiy

pressure and temperature (T -> 0 in most cases)

Ascenzi, S.; Graber, V.; Rea N.: Astroparticle Physics, 2024



Equation of state -> NS model

* From nuclear physics: Binding  Equation of hydrostatic equilibrium +
energy as a function of baryon conservation of mass
density and composition

* NS equilibrium — charge neutrality e = (1 - 2mr)—1,

+ equilibrium (e.g. B) -> e(n) ’

* First law of thermodynamics -> ae _ 1 dp,
P=n? de/on dr €tpdr

e Equation of state in the form P(e) dp m, + 4wr’p

—— = —(e+p)———
r r(r —2m,)
dm, _ Amrle.
dr



Equation of state -> NS model
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Equations of state taken from the compose
database
(https://compose.obspm.fr)

[TOK 2015] S. Typel, M. Oertel, T. Klahn,
Phys.Part.Nucl. 46, 633

[OHKT 2017] M. Oertel, M. Hempel, T. Klahn,
S. Typel, Rev. Mod. Phys. 89, 015007

[TOK 2022] S. Typel, M. Oertel, T. Klahn et al,
arxiv:2203.03209

There are dozens of models with hundreds of
parametrizations


https://compose.obspm.fr/
https://doi.org/10.1134/S1063779615040061
https://doi.org/10.1103/RevModPhys.89.015007
https://arxiv.org/pdf/2203.03209

Perturbed stars — rotation/tides

* Hartle Thorne approach (slow rotation)

ds® = —e?[1 + 2ho(r) + 2hy(r) P,]dt*
eZk
+ e {1 + —[2mo(r) + 2m2(r)P2]} dr?
r

+ 717 [1 + 2ko(r) P,] {d6” + [d¢ — w(r)dt]*sin” 6 },
* Differential equations for perturbation functions are obtained from Einstein
equations
* We match exterior and interior solution
> M, J Q



Dimensionless, frequency ind. quantities

* Nonrotating star M, R,
e Rotating stars M, Q, J, f
* Dimensionless, frequency independent quantities

Ro/My, QMy/F, I/MF (1=1/f)

Tidal deformability and Love numbers

* Tidal deformability A = 2/3 k, (M/R)°
* Love number (I=2) k,




Rotating stars

* Moment of inertia and quadrupole moment
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Rotating stars

* Change in shape of the star and total gravitational mass
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Love numbers and tidal deformability
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Fig. 3. (Top) The universal I-Love (left) and Q -Love (right) relations for slowly-rotating neutron stars and quark stars of 1My, < M < M™% with various
equations of state. A single parameter along the curve is the stellar mass or compactness, which increases to the left of the plots. The solid curves show
the fit in Eq. (15). The top axis shows the corresponding stellar mass of an isolated, non-rotating configuration with the APR equation of state. (Bottom)
Absolute fractional difference from the fit, while the dashed lines show the analytic Newtonian relations in Eq. (11) with n = 0. Observe that the relations
are equation-of-state insensitive to O(1%).

Yagi & Yunes, 2017, Phys. Rep.



Love numbers and tidal deformability
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Fig. 3. (Top) The universal I-Love (left) and Q -Love (right) relations for slowly-rotating neutron stars and quark stars of 1My, < M < M™% with various
equations of state. A single parameter along the curve is the stellar mass or compactness, which increases to the left of the plots. The solid curves show
the fit in Eq. (15). The top axis shows the corresponding stellar mass of an isolated, non-rotating configuration with the APR equation of state. (Bottom)
Absolute fractional difference from the fit, while the dashed lines show the analytic Newtonian relations in Eq. (11) with n = 0. Observe that the relations
are equation-of-state insensitive to O(1%).

Yagi & Yunes, 2017, Phys. Rep.



Can we find a difference between hybrid and
nuclear EoS?

VR LS BB AL AL AL B AL LA L
e Separate EoS from compose to
two distinct classes o1 F
. 1 1
* Nucleonic | ﬂ W ﬂ
* Hybrid g
= " p
* Calculate M-R and tidal SN |
deformability o1 |
0.2 7 lllnl . |115| a Izlnl B 12|5] - I?,ln] . 13]5] ]

Stergioulas et al 2011, MNRAS



Equation of state -> NS model
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Tidal deformability and Love numbers

* Tidal deformability A = 2/3 k,
(M/R)>

* Love number (I=2) k,
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It is difficult to distinguished from tidal
deformability

* Another approach
* Assume we know the nucleonic EoS
e Can we see the deviation if the quark core is present

* Master project of Ondrej Chlopcik
e Take one nucleonic EoS and assume there is quark core present

 We took it to rather extreme case, where the hybrid stars can have rather small
maximum mass



Ondrej’s results

* NRAPR EoS
* Bag model for quarks
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Conclusions and future plans
* NS mergers can be used to constrain equation of state of dense matter

* For phase-transitions best diaghostic tool is post-merger evolution

* Two main approaches are used
* Universal relations
+ directly connected with equations of state, computational extremely cheap
- may be wrong if used in parts of M-R plane that are not cowered by EoS
* Analytical approximation to EoS
+ constraints on parameters can be combined for more sources

- computationally more expensive, may be too strict for EoS

* We will combine these two — use tabular EoS for the outer parts and
analytical representation for the quark matter core

* Use machine learning techniques for estimations of EoS parameters
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GW170817 Mass and Radius Constraints
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FIG. 1. Marginalized posterior for the tidal deformabilities of
the two binary components of GW170817. The green shading
shows the posterior obtained using the A, (A, g) EOS-insensitive
relation to impose a common EOS for the two bodies, while the
green, blue, and orange lines denote 50% (dashed) and 90%
(solid) credible levels for the posteriors obtained using EOS-
insensitive relations, a parametrized EOS without a maximum
mass requirement, and independent EOSs (taken from [52]),
respectively. The gray shading corresponds to the unphysical
region A, < A, while the seven black scatter regions give the
tidal parameters predicted by characteristic EOS models for this
event [113,115,121-125].

3.0

2.51

— 2.09

1.04

0.5

FIG. 3. Marginalized posterior for the mass m and areal radius R of each binary component using EOS-insensitive relations (left panel)
and a parametrized EOS where we impose a lower limit on the maximum mass of 1.97 Mg, (right panel). The top blue (bottom orange)
posterior corresponds to the heavier (lighter) NS. Example mass-radius curves for selected EOSs are overplotted in gray. The lines in the
top left denote the Schwarzschild BH (R = 2m) and Buchdahl (R = 9m/4) limits. In the one-dimensional plots, solid lines are used for
the posteriors, while dashed lines are used for the corresponding parameter priors. Dotted vertical lines are used for the bounds of the
90% credible intervals.

GW170817: Measurements of Neutron Star Radii and Equation of State
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FIG. 2. Marginalized posterior (green bands) and prior (purple
dashed) for the pressure p as a function of the rest-mass density p
of the NS interior using the spectral EOS parametrization and
imposing a lower limit on the maximum NS mass supported by
the EOS of 1.97 Mg,. The dark (light) shaded region corresponds
to the 50% (90%) posterior credible level and the purple dashed
lines show the 90% prior credible interval. Vertical lines
correspond to once, twice, and six times the nuclear saturation
density. Overplotted in gray are representative EOS models
[121,122,124], using data taken from [19]; from top to bottom
at 2p,,. we show H4, APR4, and WFF1. The corner plots show
cumulative posteriors of central densities p. (top) and central
pressures p.. (right) for the two NSs (blue and orange), as well as
for the heaviest NS that the EOS supports (black). The 90%
credible intervals for p. and p. are denoted by vertical and
horizontal lines respectively for the heavier (blue dashed) and
lighter (orange dot-dashed) NS.
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FIG. 1. Evolution of the maximum rest-mass density compar-
ing DD2F-SF-1 (green line) and DD2F (black line) for
1.35 M5 — 1.35 M mergers (solid curves). Horizontal dotted
green lines mark the onset density p,,.; Of the phase transition for
DD2F-SF-1 at T = 0 and at 20 MeV.

FIG. 2. GW spectrum of the cross polarization at a distance of
20 Mpc along the polar axis comparing the DD2F-SF-1 EOS
(green curve) and the DD2F EOS (black curve).
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