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The LVK detector network

We are just completed O4 run 
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GWTC-04
https://arxiv.org/abs/2508.18082

The catalog now contains 218 candidates, 128 new compact binary coalescence candidates

Spoiler: I won’t cover the results
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Detection summary up to O4c

https://gracedb.ligo.org/superevents/public/O4/

O4 Significant Detection 
Candidates:  254 (283 Total - 29 Retracted)

O4 Low Significance Detection Candidates: 
5136(Total)
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GW170817: the first Multi-messenger GW event

coincident short GRBs detected in gamma rays 

•first direct evidence that at least some BNS mergers are 
progenitors of short GRBs

the host galaxy has been identified: NGC 
4993

an optical/infrared/UV counterpart 
(AT2017gfo) has been detected

• first spectroscopic identification of a kilonova

An X-ray and a radio counterparts have been 
identified

•off-axis afterglow from a structured jet

Abbott et al. 2017 and refs. therein

See Samaya’s talk
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Next generation GW detectors
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Gravitational wave detector of 3rd generation

Einstein Telescope 
and 
Cosmic Explorer
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3G - Horizon

From Iacovelli et al, ApJ, 2022

BBH up to

BNS up to

BBH up to z~100
BNS up to z~10
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MULTIMESSENGER

Dupletsa et al.  2022, Ronchini et al. 2022 Credit: M Branchesi

We expect to detect thousand of MMA/year with ET
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Should we panic now, or just enjoy the 
cosmic fireworks?

Artificial intelligence for GW science

Multimodal Machine Learning for 
Multimessenger physics
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Machine learning for Gravitational wave science

Elena Cuoco, Marco Cavaglià, Ik Siong Heng, David Keitel & Christopher 
Messenger, doi:10.1007/s41114-024-00055-8

A collection of research linked to COST Action CA17137, g2net, 
is presented in this book

Most recent review paper
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LVK search types

[S.Galaudage]

“CBCs
”

“CW”
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Gravitational Wave  detector data

Time series sequences:
noisy time series with low amplitude GW signal buried in
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Data representations

Time-domain Frequency-domain

Time-frequency-domain Wavelet-domain



16

The data analysis workflow
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The data analysis workflow and AI

B P Abbott et al 2020 
Class. Quantum Grav. 37 
055002

Cuoco, E., Cavaglià, M., Heng, I.S. et al.
Applications of machine learning in gravitational-wave research with current interferometric detectors.
Living Rev Relativ 28, 2 (2025). https://doi.org/10.1007/s41114-024-00055-8
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“AI”/ML and gravitational waves

So, where 
ML help? 

• For some signal types (e.g. CBCs, CWs) we know exactly what we’re looking for, 
but might not be able to efficiently cover the full generic parameter space with 
“traditional algorithms”.

• We also search for “unknown knowns” (waveforms that can’t be fully predicted)
and “unknown unknowns”.

And why is it 
difficult?

• We are looking for extremely faint signals in our detector noise:
only the loudest CBCs (peak strain ~10-21 ) can be directly “seen” in the output 
timeseries.

18

Credit goes to D. Keitel for shaping, for EuCAIFCon 2025,
Cagliari, 2025-06-16, most of the next 20 slide content you’re about to see. 
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Detector noise: Is it ideal?

Broadband

Transient noise signals:
Glitches

Gravity Spy, Zevin et al (2017)
https://www.zooniverse.org/projects/zooniverse/gravity-spy

https://www.zooniverse.org/projects/zooniverse/gravity-spy
https://www.zooniverse.org/projects/zooniverse/gravity-spy
https://www.zooniverse.org/projects/zooniverse/gravity-spy
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Non-stationary  and transient noise

Example of Scattered light glitch
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• GW detectors are extremely complex and intricate machines
• Near-Gaussian noise floor = superposition of instrumental and 

environmental noise sources
• Plus non-stationary and non-Gaussian components

Virgo
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ML for Detector design, operation and characterisation

[N. Kijbunchoo]

[Capote+2025 PRD111,062002]

LIGO

https://doi.org/10.1103/PhysRevD.111.062002
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Detector design, operation and characterisation

ML could 
offer 
possibilities 
for:

optimising detector design across an
immensely-dimensional parameter space 

real-time optimization of detector parameters
(augmenting the control loops)

Real-time noise prediction and mitigation:
correlations between environmental/instrumental 
monitors and the main GW strain channel

Non-linear noise regression and subtraction after 
data-taking

Glitch identification and removal (non-Gaussian 
transients)

[N. Kijbunchoo]

[Capote+2025 PRD111,062002]

https://doi.org/10.1103/PhysRevD.111.062002
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Detector design, operation and characterisation

PRD101,042003

Vajente+2020 
PRD101,042003: 
“Machine-
learning 
nonstationary 
noise out of 
gravitational-
wave detectors”
→ NonSENS: 
“Non-linear 
Noise 
Subtraction”

parameterised model for non-linear relations 
between channels

optimised with gradient descent model (ADAM)

O3: non-linear subtraction of narrowband
instrumental lines, in particular 60 Hz power line

O4: mainly to remove beam jitter noise

[Vajente+2020 PRD101,042003]

Some noise components have secure “witness channels”: 
auxiliary sensors that allow monitoring their time-varying strength and 
subtracting the effect from the GW strain channel

https://doi.org/10.1103/PhysRevD.101.042003
https://doi.org/10.1103/PhysRevD.101.042003
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Detector design, operation and characterisation
• Loud, short, broadband, complex-morphology glitches

are among the most problematic noise artifacts.

• Gravity Spy: synergy of citizen science and machine learning

– Zevin+ 2017 CQG34,064003, 2023 EPJP139,100
– triggers flagged by excess power algorithm (“omicron”)
– basic data unit: time-frequency spectrograms
– initial pre-labeled data to train a CNN for pre-classification
– volunteers on Zooniverse* confirm/refine classification
– feedback loop to retrain the network

• results used e.g. in rapid response to online alerts

• actual glitch removal mainly with BayesWave algorithm [Hourihane+2022 
PRD106,042006] 

[N. Kijbunchoo] [*] zooniverse.org/projects/zooniverse/gravity-spy

https://doi.org/10.1088/1361-6382/aa5cea
https://doi.org/10.1140/epjp/s13360-023-04795-4
https://doi.org/10.1103/PhysRevD.106.042006
https://www.zooniverse.org/projects/zooniverse/gravity-spy
https://www.zooniverse.org/projects/zooniverse/gravity-spy
https://www.zooniverse.org/projects/zooniverse/gravity-spy
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Spectrogram for each image 

2-seconds time window to highlight 
features in long glitches

Data is whitened

Optional contrast stretch

CNN Glitch classification  

Simulations now available on FigShare

Razzano, Massimiliano; Cuoco, Elena (2018): Simulated image data for testing 

machine learning classification of noise transients in gravitational wave detectors 

(Razzano & Cuoco 2018). figshare. Collection. 

https://doi.org/10.6084/m9.figshare.c.4254017.v1

https://doi.org/10.6084/m9.figshare.c.4254017.v1
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Detector design, operation and characterisation

2411.16104

CQG41,195024 2501.18423

2205.09204

Can we embed more ML/AI into the day-to-day detector operation?
(control loops, lock acquisition and loss prevention, …) ( → e.g. YOLO point absorber 
detection, Goode+ 2411.16104)

More production uses for improved noise subtraction and glitch mitigation?
(e.g. DeepClean [Saleem+2024 CQG41,195024], DeepExtractor [Dooney+ 2501.18423])

ML/AI for hunting narrow spectral lines, which especially affect long-duration signal 
searches?

Realistic noise simulation (e.g. Gengli glitch generator: Lopez+ 2205.09204)

Improved automation of calibration and detector characterisation

https://arxiv.org/abs/2411.16104
https://doi.org/10.1088/1361-6382/ad708a
https://arxiv.org/abs/2501.18423
https://arxiv.org/abs/2205.09204
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Control system via Reinforcement learning 
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CBCs

[LVC2016 PRL116,061102 / PRL116,241102]

● evolution of compact objects
● tests of GR in strong-field regime
● “standard siren” cosmography
● nuclear matter at extreme 

densities

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241102
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Compact binary coalescences

30

Signal waveforms can be predicted from General Relativity

“Searches”: find candidates and estimate their significance:
• multiple matched-filter pipelines (fixed template banks)
• weakly-modelled pipelines too

“Parameter estimation”: Bayesian inference

[LVC2016 PRX6,041015]  

a review: Chatziioannou+ 
2409.02037

Challenges: Full generic parameter space coverage

Search efficiency in periods affected by non-stationary noise

Computational cost of full Bayesian inference

Robustness of Bayesian inference in the presence of noise glitches

Latency for public alerts (enabling telescope follow-up)

https://doi.org/10.1103/PhysRevX.6.041015
https://arxiv.org/abs/2409.02037


31

Compact binary coalescences – searches
• Main promise of ML: front-load computational cost to training phase, find candidates even faster
• GW g2net-Kaggle challenge* and MLGWSC-1 [Schäfer+2023 PRD107,023021]:

standardised data sets to compare ML solutions to each other, and standard matched filter
• AresGW** [Nousi+2023 PRD108,024022, Kolonari+2025 MLST6,015054], based on ResNet:

strong performance on MLGWSC-1, 8 new GW candidates reported from O3 data
• SAGE*** [Nagarajan&Messenger 2501.13846], OSNet feature extractor + ResNet/CBAM classifier:

further improvements on MLGWSC-1 over AresGW and matched filter
– paper also highlights 11 types of biases that challenge CBC detection with ML:

training set construction, spectral bias, etc

• Caveat: ML submissions often optimised to the specific parameter space of the 
challenge, which could also be done to improve performance of standard methods!
(e.g. Kumar&Dent 2024 PRD110,043036) 

[*] kaggle.com/c/g2net-gravitational-wave-detection (2021)  |  [**] github.com/vivinousi/gw-detection-deep-learning |  [***] github.com/nnarenraju/sage
More examples:
Trovato+2024 CQG41,125003
Marx+ 2403.18661

https://doi.org/10.1103/PhysRevD.107.023021
https://doi.org/10.1103/PhysRevD.108.024022
https://doi.org/10.1088/2632-2153/adb5ed
https://arxiv.org/abs/2501.13846
https://doi.org/10.1103/PhysRevD.110.043036
https://www.kaggle.com/c/g2net-gravitational-wave-detection/
https://www.kaggle.com/c/g2net-gravitational-wave-detection/
https://www.kaggle.com/c/g2net-gravitational-wave-detection/
https://www.kaggle.com/c/g2net-gravitational-wave-detection/
https://www.kaggle.com/c/g2net-gravitational-wave-detection/
https://www.kaggle.com/c/g2net-gravitational-wave-detection/
https://www.kaggle.com/c/g2net-gravitational-wave-detection/
https://github.com/vivinousi/gw-detection-deep-learning
https://github.com/vivinousi/gw-detection-deep-learning
https://github.com/vivinousi/gw-detection-deep-learning
https://github.com/vivinousi/gw-detection-deep-learning
https://github.com/vivinousi/gw-detection-deep-learning
https://github.com/vivinousi/gw-detection-deep-learning
https://github.com/vivinousi/gw-detection-deep-learning
https://github.com/nnarenraju/sage
https://doi.org/10.1088/1361-6382/ad40f0
https://arxiv.org/abs/2403.18661
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Waveform building
• Gaussian process regression (GPR) to compute the waveform at 

points of the parameter space not covered by numerical relativity. 

• GPR has been used to build surrogate models of both non-

precessing and precessing BBH systems.

See also:

Z. Doctor et al, “Statistical gravitational 

waveform models: What to simulate 
next?”

Phys. Rev. D 96, 123011 (2017)
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Compact binary coalescences – inference

• DINGO [Dax+2021 PRL127,241103, 2023 PRL130,171403]:
neural posterior estimation (with normalising flows)

in seconds–minutes instead of hours–days per event

• initially working best for high-mass, short binary-black-hole signals,
now also extended to binary neutron stars [Dax+2025 Nature 639,49-53]

• special promise for otherwise extremely expensive waveforms,
e.g. including orbital eccentricity [Gupte+ 2404.14286]

[Dax+2023 PRL130,171403]
[Dax+2021 PRL127,241103]

[github.com/dingo-gw/dingo]

Other examples:
Nessai: Williams+2021 PRD103,103006
Peregrine: Bhardwaj+2023 PRD108,042004
AMPLFI: Chatterjee+ 2407.19048

https://doi.org/10.1103/PhysRevLett.127.241103
https://doi.org/10.1103/PhysRevLett.130.171403
https://doi.org/10.1038/s41586-025-08593-z
https://doi.org/10.1038/s41586-025-08593-z
https://doi.org/10.1038/s41586-025-08593-z
https://arxiv.org/abs/2404.14286
https://doi.org/10.1103/PhysRevLett.130.171403
https://doi.org/10.1103/PhysRevLett.127.241103
https://github.com/dingo-gw/dingo
https://github.com/dingo-gw/dingo
https://github.com/dingo-gw/dingo
https://doi.org/10.1103/PhysRevD.103.103006
https://doi.org/10.1103/PhysRevD.108.042004
https://arxiv.org/abs/2407.19048
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Compact binary coalescences

2501.13846

gracedb.ligo.org emfollow.docs.ligo.org/userguide

2412.03454 Nature 639,49-53 PR

L.130.171402 2308.06318

2504.21087

Optimal network architectures and training methods to deal with the typical kinds of biases identified by 
2501.13846 and with the full complexities of real detector data

Fair comparisons between ML and “traditional” search algorithms, avoiding fine-tuning

Finding the right mix for fruitful coexistence of fast neural and “full” Bayesian inference

Passing detailed LVK scientific&code review and operational stability criteria for production runs, 
including low-latency alerts (gracedb.ligo.org | emfollow.docs.ligo.org/userguide)

ML in waveform modeling itself

Future detectors:

• longer signal durations
(e.g. Hu+2412.03454, Dax+2025 Nature 639,49-53)

• huge detection rates ( → overlapping signals!)
(e.g. Langendorff+2023 PRL.130.171402, Alvey+ 2308.06318, 
Santoliquido+ 2504.21087)

open problems & 
future directions

https://arxiv.org/abs/2501.13846
https://gracedb.ligo.org/
https://emfollow.docs.ligo.org/userguide/
https://arxiv.org/abs/2412.03454
https://doi.org/10.1038/s41586-025-08593-z
https://doi.org/10.1103/PhysRevLett.130.171402
https://doi.org/10.1103/PhysRevLett.130.171402
https://arxiv.org/abs/2308.06318
https://arxiv.org/abs/2504.21087
https://arxiv.org/abs/2501.13846
https://gracedb.ligo.org/
https://emfollow.docs.ligo.org/userguide/
https://emfollow.docs.ligo.org/userguide/
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GW bursts

Less well-modeled GW transients: eccentric BBHs,
supernovae, magnetars, cosmic strings

Search with more generic methods:
excess power, pattern recognition, …

No detections so far. (Besides BBHs!)

Non-detections can still yield physical constraints:
nearby supernovae, glitching pulsars, …

[NASA/ESA/ASU]
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GW bursts

• Less well-modeled GW transients: eccentric BBHs, supernovae, magnetars, 
cosmic strings,… and unknown unknowns!

• Most LVK algorithms based on some form of excess power
and searches for correlated structures in time-frequency spectrograms

• Also possible coherently across multiple detectors

• Basically: anomaly detection and pattern recognition

• Weakly-modeled techniques,
such as wavelet decomposition,
also allow signal reconstruction

state of 
the art

[Drago+2021 JsoftX14,100678]

[LVC2016 PRD93,122004]

https://doi.org/10.1016/j.softx.2021.100678
https://doi.org/10.1103/PhysRevD.93.122004


37

GW bursts. ML pipeline example

• MLy pipeline

– Skliris+2024 PRD110,104034

– git.ligo.org/mly/mly

• Dual architecture for coincidence
and coherent modes across detectors

• First tested on LIGO-Virgo O2 data

• Now LVK-reviewed and running
“in production” on O4 data
[emfollow.docs.ligo.org/userguide/analy
sis/searches.html#unmodeled-search]

https://doi.org/10.1103/PhysRevD.110.104034
https://git.ligo.org/mly/mly
https://git.ligo.org/mly/mly
https://emfollow.docs.ligo.org/userguide/analysis/searches.html#unmodeled-search
https://emfollow.docs.ligo.org/userguide/analysis/searches.html#unmodeled-search
https://emfollow.docs.ligo.org/userguide/analysis/searches.html#unmodeled-search
https://emfollow.docs.ligo.org/userguide/analysis/searches.html#unmodeled-search
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GW bursts

gwburst.gitlab.io PRD104,023014

PRD107,062002 PRD111,023054

MLST5,025020 2412.19883

Besides pure ML pipelines like MLy, also “traditional” ones getting enhanced with ML ingredients,
e.g. XGBoost postprocessing for cWB [gwburst.gitlab.io] – Mishra+2021 PRD104,023014
→ used on O3 data in Szczepańczyk+2023 PRD107,062002, Mishra+2025 PRD111,023054

Bridging the gap between “modelled” and “unmodelled burst” analyses
for complicated sources like supernovae, with simulation-based inference etc.

Pure anomaly detection frameworks for the known unknowns
(e.g. GWAK, Raikman+2025 MLST5,025020 and 2412.19883)

Interpretable/explainable AI to understand what is being detected?

open problems & 
future directions

https://gwburst.gitlab.io/
https://doi.org/10.1103/PhysRevD.104.023014
https://doi.org/10.1103/PhysRevD.107.062002
https://doi.org/10.1103/PhysRevD.111.023054
https://doi.org/10.1088/2632-2153/ad3a31
https://arxiv.org/abs/2412.19883
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Continuous Waves

Simple signal model → matched filtering

Optimal fully-coherent analysis possible for known
pulsars with full timing model from EM observations

Computationally extremely challenging
for unknown sources: large parameter space
and extremely fine required grid resolution

Semi-coherent methods provide best tradeoff so far
between sensitivity and computing cost

Similar issues for long-duration CW-like transients
from glitching pulsars, BNS remnants, …

G2net-Kaggle challenge* mostly produced GPU-optimised
variants of “traditional” semi-coherent methods

[Sieniawska&Bejger2019]

[LIGO/T.Pyle/R.Prix]

[*] kaggle.com/competitions/g2net-detecting-continuous-gravitational-waves (2023)

a review: Riles2023 LRR26,3

https://www.kaggle.com/competitions/g2net-detecting-continuous-gravitational-waves
https://www.kaggle.com/competitions/g2net-detecting-continuous-gravitational-waves
https://www.kaggle.com/competitions/g2net-detecting-continuous-gravitational-waves
https://www.kaggle.com/competitions/g2net-detecting-continuous-gravitational-waves
https://www.kaggle.com/competitions/g2net-detecting-continuous-gravitational-waves
https://www.kaggle.com/competitions/g2net-detecting-continuous-gravitational-waves
https://www.kaggle.com/competitions/g2net-detecting-continuous-gravitational-waves
https://www.kaggle.com/competitions/g2net-detecting-continuous-gravitational-waves
https://www.kaggle.com/competitions/g2net-detecting-continuous-gravitational-waves
https://doi.org/10.1007/s41114-023-00044-3
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Continuous Waves

PRD108,063021

PRD110,124071

Joshi&Prix 2023: “Novel neural-
network architecture for 

continuous
gravitational waves”

[PRD108,063021]

Identified the key challenges of 
neural networks applied to CWs:
• signals not only faint, but spread across 

long durations, with low local contrast 
and rich structure

• morphology changes across parameter 
space, Doppler shifts become more 
challenging at high frequencies

For durations up to 10 days, 
customised CNNs can almost

reach matched-filter 
performance, but not yet quite.

Joshi&Prix 2024  
[PRD110,124071]:

can also generalise to a single 
network trained across 20–1000 

Hz

https://doi.org/10.1103/PhysRevD.108.063021
https://doi.org/10.1103/PhysRevD.110.124071
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Continuous Waves(-like long transients)
BNS merger remnants: rapid spindown

• Miller+2019 PRD100,062005: How effective is 
machine learning to detect long transient 
gravitational waves from neutron stars in a 
real search?

• Using CNNs on spectrograms

• Pulsar glitches can trigger CW-like 
transients of unknown duration

• Modafferi+2023 PRD108,023005: 
Convolutional neural network search for 
long-duration transient gravitational waves 
from glitching pulsars

• Hybrid approach:CNN on matched-filter
intermediate data
products

https://doi.org/10.1103/PhysRevD.100.062005
https://doi.org/10.1103/PhysRevD.108.023005
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Continuous Waves

PRD108,063021

Still working towards a “first detection” with any method (“traditional” or ML)

Immense sensitivity gap between optimal fully-coherent matched filter
and what is computationally feasible over large parameter spaces
(factors 5–50 in “depth” below the detector noise floor)

Neutron stars are known to be “messy” → make methods more robust to signal 
deviations?

Need to overcome the challenges identified by PRD108,063021 and others:

• very faint signals, with even fainter local contrast and complex morphologies, that vary 
strongly across parameter space

open problems & 
future directions

https://doi.org/10.1103/PhysRevD.108.063021
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Stochastic signals and backgrounds

PRX8,021019

Persistent signals without deterministic models

State of the art: primarily cross-correlation between 2+ detectors, already computationally 
very efficient

Key challenge: controlling correlated noise sources

Not many example applications of ML to this yet

Open problems & future directions:

• ML noise mitigation?
• Early-universe physics through simulation-based inference?
• Intermittent, non-Gaussian backgrounds: enabling optimal Bayesian-style search for stochastic background from 

faint CBC sources? [Smith&Thrane2018 PRX8,021019 ]
• Overlap with “burst” and CW-like searches for long-duration transients,

with possibly rather complicated waveforms (newborn neutron stars, magnetars, …)

[LVK 2021 PRD104,022005]

[APS/A.Stonebraker]

a review: Remortel+2023 
PPNP128,104003

https://doi.org/10.1103/PhysRevX.8.021019
https://doi.org/10.1103/PhysRevD.104.022005
https://doi.org/10.1016/j.ppnp.2022.104003
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CBC

Examples of GW Transient signal ML approaches

CBC CCSN
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Waveform depends 
on progenitor star

Different emission 
mechanisms (Proto-

neutron star 
oscillation, Standing 

Accretion Shock 
Instability (SASI),..)

Largely Stochastic

Best waveform 
models from 

computationally 
expensive 3D 
simulations

Different simulation 
models

Rare (~100 yrs in 
Milky Way)

Need an alternative to matched filter 

approach

Ott et al. (2017) 

GWs from Core Collapse Supernovae
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Core-Collapse Supernovae models

Iess, Cuoco, Morawski, Powell, 
https://doi.org/10.1088/2632-2153/ab7d31

Andresen s11: Low amplitude, non-exploding, peak emission at lower frequencies

Radice s13: Non-exploding, lower amplitudes
 

Radice s25: Late explosion time, standing accretion shock instability (SASI), high peak 
frequency

Powell s18: High peak frequency, exploding model

Powell He3.5: ultra-stripped helium star, high peak frequency, exploding model

https://doi.org/10.1088/2632-2153/ab7d31
https://doi.org/10.1088/2632-2153/ab7d31
https://doi.org/10.1088/2632-2153/ab7d31
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SINE GAUSSIAN & SCATTERED LIGHT GLITCHES

Distances: 
VO3 0.01 kpc to 10 kpc
ET 0.1 kpc to 1000 kpc 

Random sky localization

Large SNR range

Schutz (2011)

BACKGROUND STRAIN :  simulated data sampled at 4096 Hz built from 
VO3 and ET projected sensitivities 

5/13

MDC and CCSN GW simulations
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ET, MERGED 1D & 2D CNN

Train on all  (4 CCSNe waveform models + glitches).

Test on all.

TRAINED 

CNN MODEL

Test 

samples

he3.5 Sine 

gauss.

s18 s11 s13 s25 Scatt. 

light

COMPLEX TASK LONGER TRAINING (> 1 hr)

MultiLabel classification
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44 segments 
(4096s per 

segment) from 
O2 science run.

Added m39, 
y20, s18np 

models 
(Powell, 

Mueller 2020).

Fixed distance 
of 1 kpc. 

Added LSTM 
Networks, 

suited for time 
series data.

Added Three 
ITF 

classification.

Powell s18np: differs from s18 since simulation does not 
include perturbations from the convective oxygen shell. As 
a result, this model develops strong SASI after collapse.
 

Powell y20: non-rotating, 20 solar mass Wolf-Rayet star 
with solar metallicity.

Powell m39: rapidly rotating Wolf-Rayet star with an initial 
helium star mass of 39 solar masses

Powell and  Müller (2020)

Test on O2 real Data
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Noise PSD is non stationary.

Multiple Glitch Families.

SNR distribution is affected by ITF antenna pattern.

Dataset: ~15000 samples.

Imbalanced Dataset due to different model amplitudes.

CCSN Classification on Simulated and Real O2 Data with CNNs and LSTMs
A. Iess, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, A&A 669, A42 (2023)  

Real noise from O2 science run
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MULTILABEL CLASSIFICATION ON REAL O2 NOISE (SINGLE ITF, LIGO H1, DIFFERENT 

MODELS)

• Bi-LSTM, 2 recurrent layers

• ~10 ms/sample 

• Best weights over 100 epochs

• 1D-CNN, 4 convolutional layers

• ~2 ms/sample 

• Best weights over 20 epochs

• 2D-CNN, 4 convolutional layers

• ~3 ms/sample 

• Best weights over 20 epochs

A. Iess, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, A&A 669, A42 (2023)  

Multi-label task
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Dataset breakdown: 675 noise, 329 s18p, 491 s18np, 
115 he3.5, 1940 m39, 1139 y20, 76 s13, 1557 s25.

Input to NNs have additional dimension (ITF) 

L1

H1

V1

A. Iess, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, A&A 669, A42 (2023)  

Analysis on 3 detectors and merged 
models on O2 data
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Determining the core-collapse supernova explosion 
mechanism

Jade Powell, Alberto Iess, Miquel Llorens-Monteagudo, Martin Obergaulinger, 
Bernhard Muller, Alejandro TorresFornè, Elena Cuoco, and Josè A. Font. 
Determining the core-collapse supernova explosion mechanism with current 
and future gravitational-wave observatories. Phys. Rev. D 109, 063019

ET LIGO NEMO

2D-CNN
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Gravitational wave modelling: template matching

GW detection of binary systems relies on 
matched-filter analysis. Template accuracy is 
crucial!

Accurate solutions of the Einstein equations for 
binary sources can  be obtained with 
Numerical Relativity (NR) simulations.

High computational cost prevent the 
production of NR waveforms catalogs spanning 
the full parameter space.

LIGO and Virgo rely on approximate solutions 
that are traditionally obtained through the 
effective-one-body or phenomenological 
modeling approaches.

How can machine learning help?
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Example for detection/classification for CBC signals: Anomaly 
Detection  

Create a deep learning pipeline allowing detection 
of anomalies defined in terms of transient signals: 

gravitational waves as well as glitches.

Additionally: Consider reconstruction of the 
signal for the found anomalies.

Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, 2021 Mach. 
Learn.: Sci. Technol. 2 045014 
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Model 
input

Model 
prediction

Autoencoder workflow
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O2 data - MSE Distributions
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GW150914

Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, 
https://iopscience.iop.org/article/10.1088/2632-2153/abf3d0



59

Overlapping signals in 3-G detectors: tansformer 
approach 

Lucia Papalini ,  Federico De Santi, Massimiliano Razzano, Ik Siong Heng, Elena Cuoco, 
arXiv:2505.02773 Accepted on CQG

https://arxiv.org/abs/2505.02773
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Multimodal Analysis for multi-
messenger astrophysics

Cuoco, E., Patricelli, B., Iess, A. et al. Computational challenges for multimodal 
astrophysics. Nat Comput Sci 2, 479–485 (2022). 
https://doi.org/10.1038/s43588-022-00288-z
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GW170817: the first Multi-messenger GW event

coincident short GRBs detected in gamma rays 

•first direct evidence that at least some BNS mergers are 
progenitors of short GRBs

the host galaxy has been identified: NGC 
4993

an optical/infrared/UV counterpart 
(AT2017gfo) has been detected

• first spectroscopic identification of a kilonova

An X-ray and a radio counterparts have been 
identified

•off-axis afterglow from a structured jet

Abbott et al. 2017 and refs. therein



62

Multi-Messenger Astrophysical signals

CBC events CCSN events
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Multimodal inputs

Visual:Images/videos Text: Natural language 
processing

Speech/audio signal

http://ingrit.com/ingolf/sonogram/index.htm

The “world” communicates via different modalities
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How to combine different information?

Image captioning, lip reading or video sonorization, sentiment analysis...

Feature
extraction

Feature
extraction

Feature
extraction

Analysis 
pipeline

Analysis 
pipeline

Analysis 
pipeline

Merge
concatenate
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Multimodal Machine Learning (MMML)

Machine/Deep learning 
pipeline

Cuoco, E.; Patricelli, B.;Iess, A.; Morawski, F. Multimodal Analysis of Gravitational Wave Signals and Gamma-Ray 
Bursts from Binary Neutron Star Mergers. Universe 2021, 7, 394. https://doi.org/10.3390/universe7110394 



66

Example of  MMML in other fields

Medical 
applications

Speech 
recognition

Robotic Fraudulent 
behaviours

Genetic Sentiment 
analysis

Merge 
informations 
from 
images, 
symptoms, 
blood or 
other 
analysis,...

Images, 
videos, 
captions, 
labial,..

Spatial 
information, 
audio,
multi-
sensors,...

Biometrics, 
images, text, 
speech,...

histopathologi
c diagnosis, 
cytogenetic,...

Text, images, 
etc...
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MMML for Astrophysics
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Case study: Application to GW-GRB signals

credits: LIGO/VIRGO collaboration;  Abbott et al. 2017, ApJ, 848, 13Credit: NSF/LIGO/Sonoma State University/A. Simonnet 
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Goal of the project

To estimate the redshift (z) of GRBs associated 
with BNS mergers

• We have a bunch of simulated GRBs, and we assume that we 

know z only for a fraction of them;

• We train the pipeline on the GRBs with known z;

• We predict z using joint GRB and GW analysis
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Simulations: what we simulated

Multi-messenger signals from BNS 
mergers in 3 steps:

Generation of a population of BNS 
merging systems

Simulation of the associated GW 
signals and GW data for a detector 

such as the Einstein Telescope

Simulation of the associated short 
GRB light curve as observed by a 

Fermi-like detector

Cuoco, E.; Patricelli, B.; Iess, A.; Morawski, F. Multimodal Analysis of Gravitational Wave Signals and Gamma-Ray Bursts from Binary Neutron Star Mergers. Universe 2021, 7, 394. 
https://doi.org/10.3390/universe7110394 
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Binary Neutron Star population

NS spins: aligned; maximum value: 0.05

Focus on sources giving rise to an on-axis 
GRB -> maximum inclination of the BNS  
system fixed to 8 deg NS masses: uniform 
distribution between 1 and 2.5 M⊙

BNS Distance: uniform distribution between 1 
and 500 Mpc

https://doi.org/10.3390/universe7110394 

Distance (Mpc)
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GW detector noise: Einstein Telescope

https://doi.org/10.3390/universe7110394 

Hild et al. 2011, Class. Quantum Grav., 28 
094013
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Electromagnetic simulations

We simulate the GRB afterglow gamma-ray light 
curves following the approach in Patricelli et al. 2016:

GRB 090510 as a prototype

light curve corrected to take into account
•The distance of the sources with respect to GRB 

090510
•A range of possible GRB isotropic energies

We assume that all BNS mergers are associated with a 
short GRB

Patricelli et al. 2016, 
JCAP, 11, 56
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Data transformation: Time-series or images

Wavelet transform using: OverLordGoldDragon, ssqueezepy, 2020. GitHub repository, 
https://github.com/OverLordGoldDragon/ssqueezepy/. DOI: 10.5281/zenodo.5080514

https://doi.org/10.3390/universe7110394 

Simulated data set
○ Sampling frequency: 2048 Hz 
○ Number of BNS-GRB events: 3000
○ Train/Validation/Test set: 70%, 10%, 20%

https://github.com/OverLordGoldDragon/ssqueezepy/
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The deep network

2-D CNN for GW time-frequency:
- 5 convolutional layers with (3,3) 

kernels and 64, 32, 16, 16, 32 filters.
- Max pooling (2,2) after convolutional 

layer

1-D CNN for GRB light curve:
- 3 convolutional layers with kernels 5, 

3, 3 and 80, 40, 40 filters
- Max pooling of 2 after convolutional 

layer

Flattening + Concatenation  + FC 
layer with linear activation

ReLU activation function in CNN
Adam optimizer
batch size: 16
Number of training epochs: 100

https://doi.org/10.3390/universe7110394 
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MMML for GW-GRB results

https://doi.org/10.3390/universe7110394 
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Wavefier: a framework for multi-
messenger astrophysics

Elena Cuoco, Alberto Iess, Filip Morawski, Barbara Patricelli, sara vallero, Emanuel Marzini, 
Alessandro Petrocelli, Alessandro Staniscia.
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WAVEFIER aims to set up a framework for analysis of different types of astrophysical data, paving the way to real-time Multi-
Messenger astronomy studies. This is done leveraging the newest available software technologies.

KEY POINTS

• Setup a prototype for a real time and offline pipeline for the detection and analysis of transient signals and 
their automatic classification.

• Best practice for software management.
• Software architecture solutions to prototype a scalable pipeline for big data analysis in GW context.
• Interoperability and access to data and services.
• ICT services supporting research infrastructures.
• Use of data in network infrastructures and service.

IN COLLABORATION WITH:

Wavefier: A framework for multi-messenger  

https://wavefier.github.io/wavefier/https://zenodo.org/records/3356656

Elena Cuoco, Emanuel Marzini, Filip Morawski, Alessandro Petrocelli, & Alessandro Staniscia. (2019). 

A prototype for a real time pipeline for the detection of transient signals and their automatic 

classification (1.0). Zenodo. https://doi.org/10.5281/zenodo.3356656

https://doi.org/10.5281/zenodo.3356656
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Multi-Messenger

Wavefier GOAL

Alberto Iess
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• Successfully tested attaching to 
NASA GCN notices alerts for GRB 
from Fermi and INTEGRAL via Kafka.

• Successfully imported FRB CHIME 
and Fermi LAT catalog data in .fits 
format.

• Grafana dashboard for FRB data 
visualization.

WAVEFIER: Fast Radio Burst and Gamma ray bursts

Alberto Iess

A. Iess, G. Principe
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What’s next?

Wavefier in production  
(thanks to ACME and 
OSCARS project) on 

computing center

Test on new simulation 
data for ET

Merger of 3 and more 
messenger (open or 

simulated data)

Preparing more and 
more ML based 

pipeline for O5 or 3° 
generation detector

Thank you for your attention
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