

Gravitational Waves, Artificial Intelligence and a Multimodal Approach

ALMA MATER STUDIORUM
UNIVERSITÀ DI BOLOGNA

AI&GW@CZ

Workshop on gravitational wave science and artificial intelligence in the Czech Republic

28 November 2025

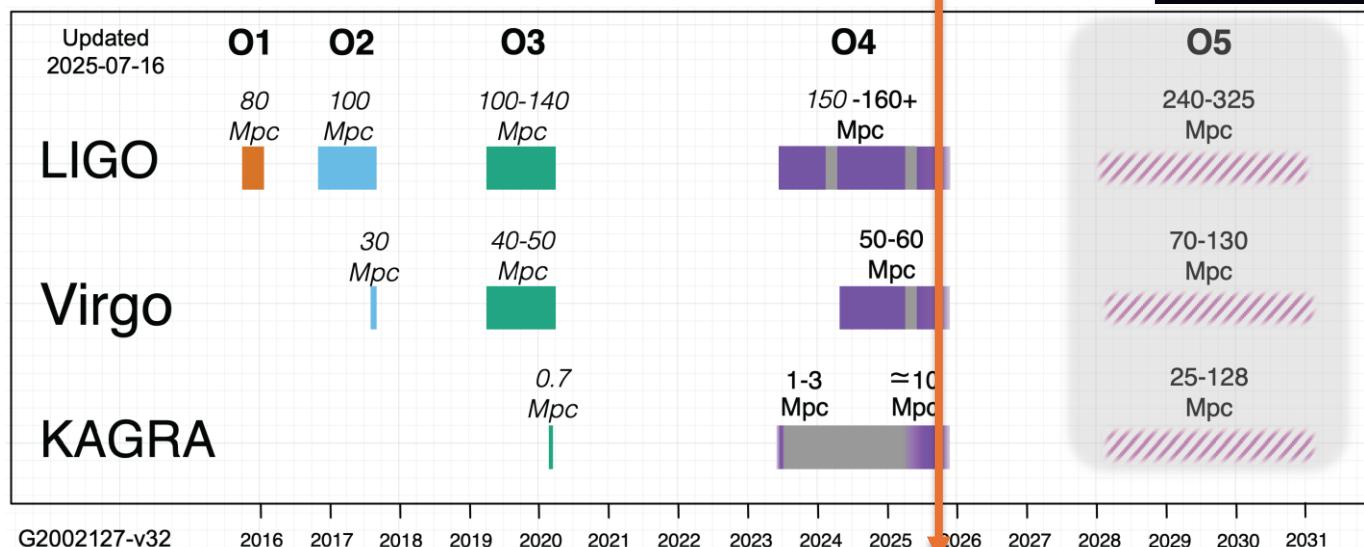
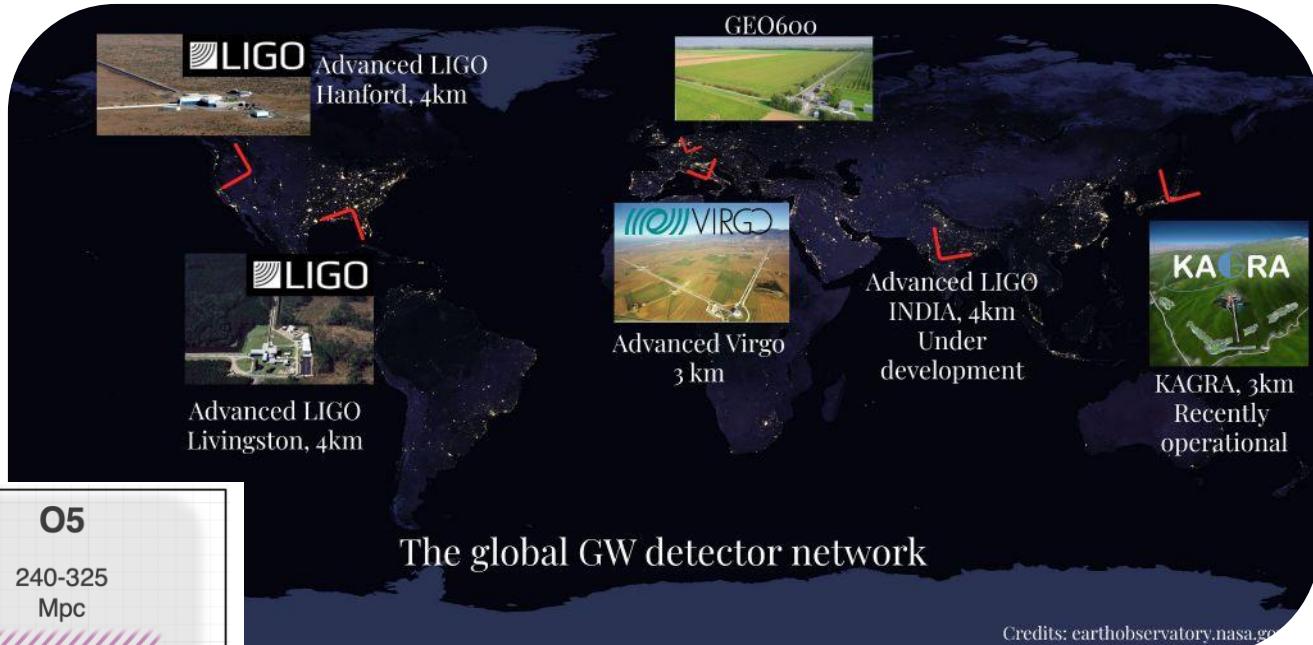
Elena Cuoco

DIFA, Alma Mater Studiorum, Bologna University

ALMA MATER STUDIORUM
UNIVERSITÀ DI BOLOGNA

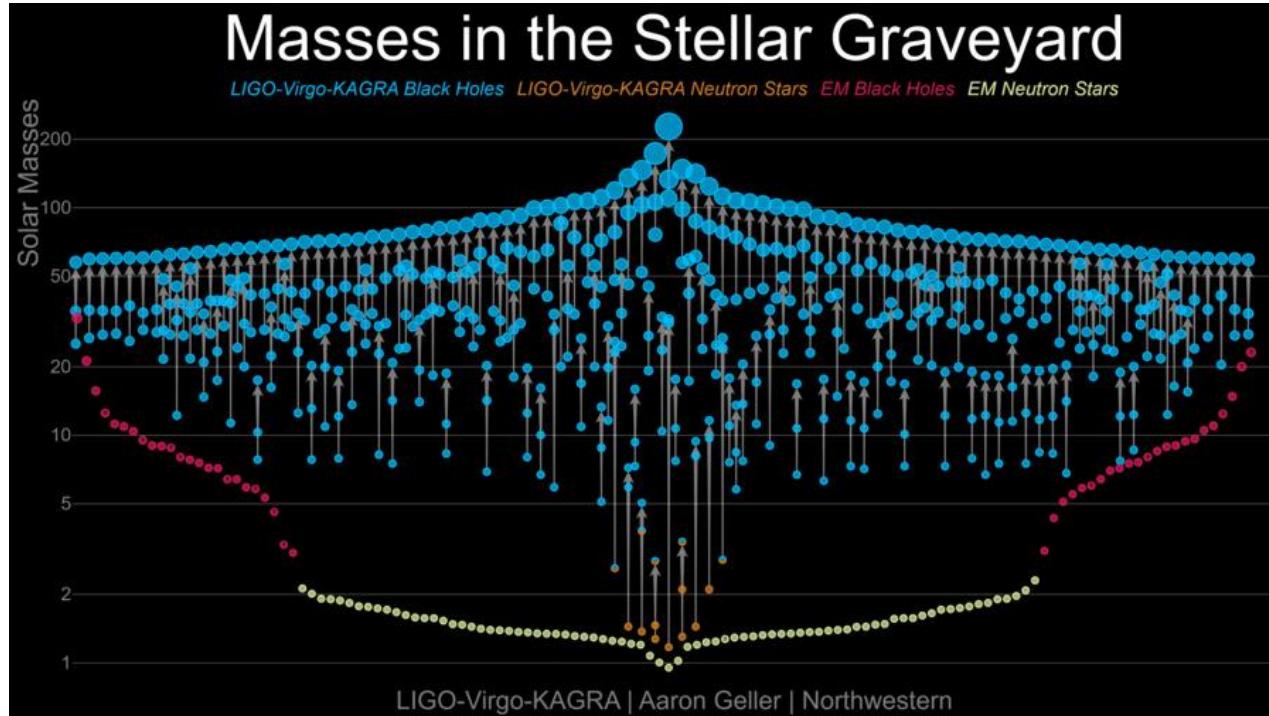
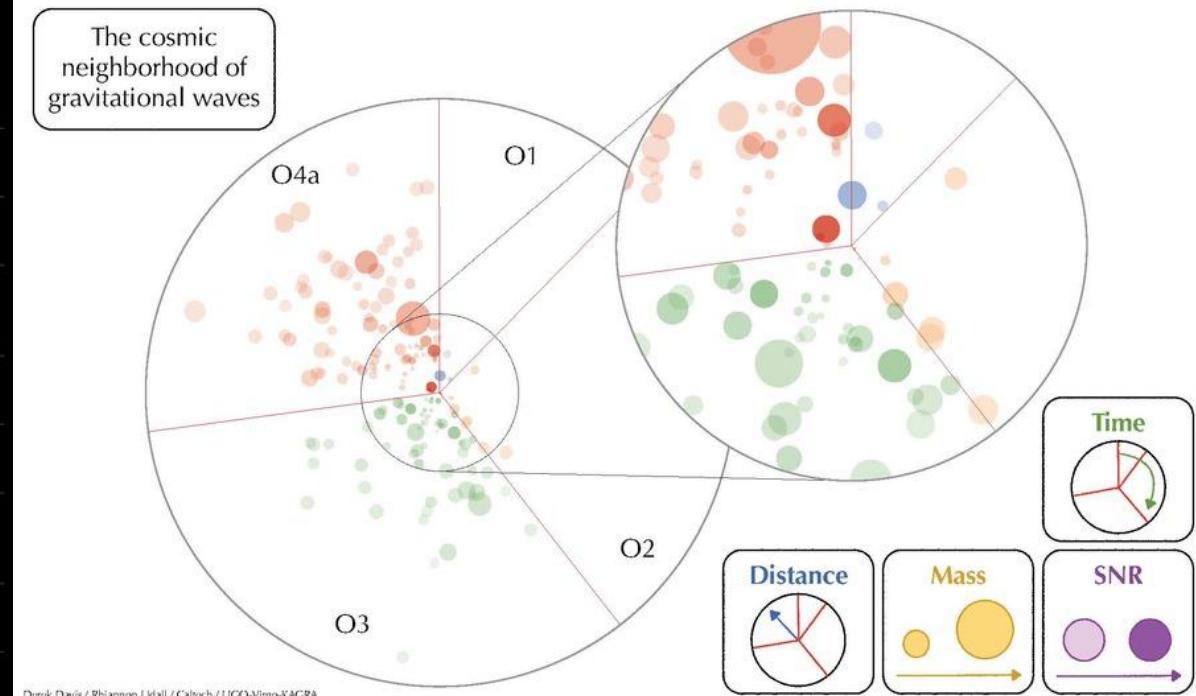
The LVK detector network

We are just completed O4 run



GWTC-04

<https://arxiv.org/abs/2508.18082>

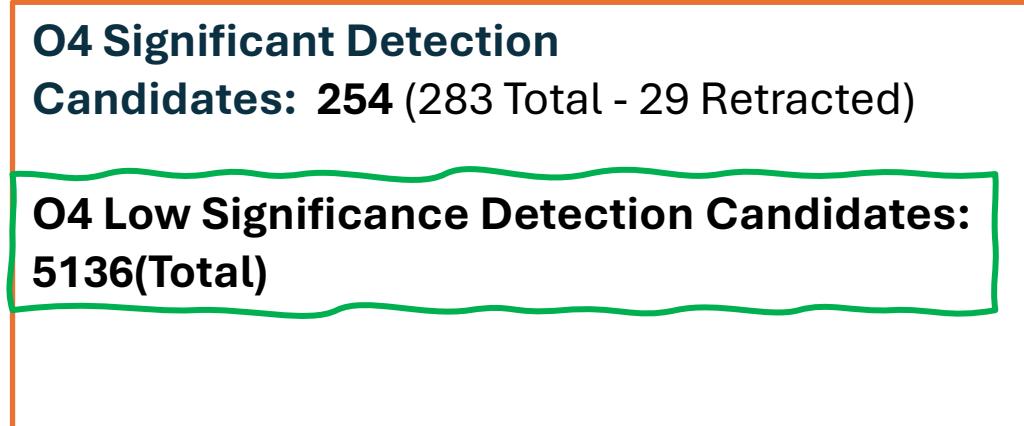


The catalog now contains 218 candidates, 128 new compact binary coalescence candidates

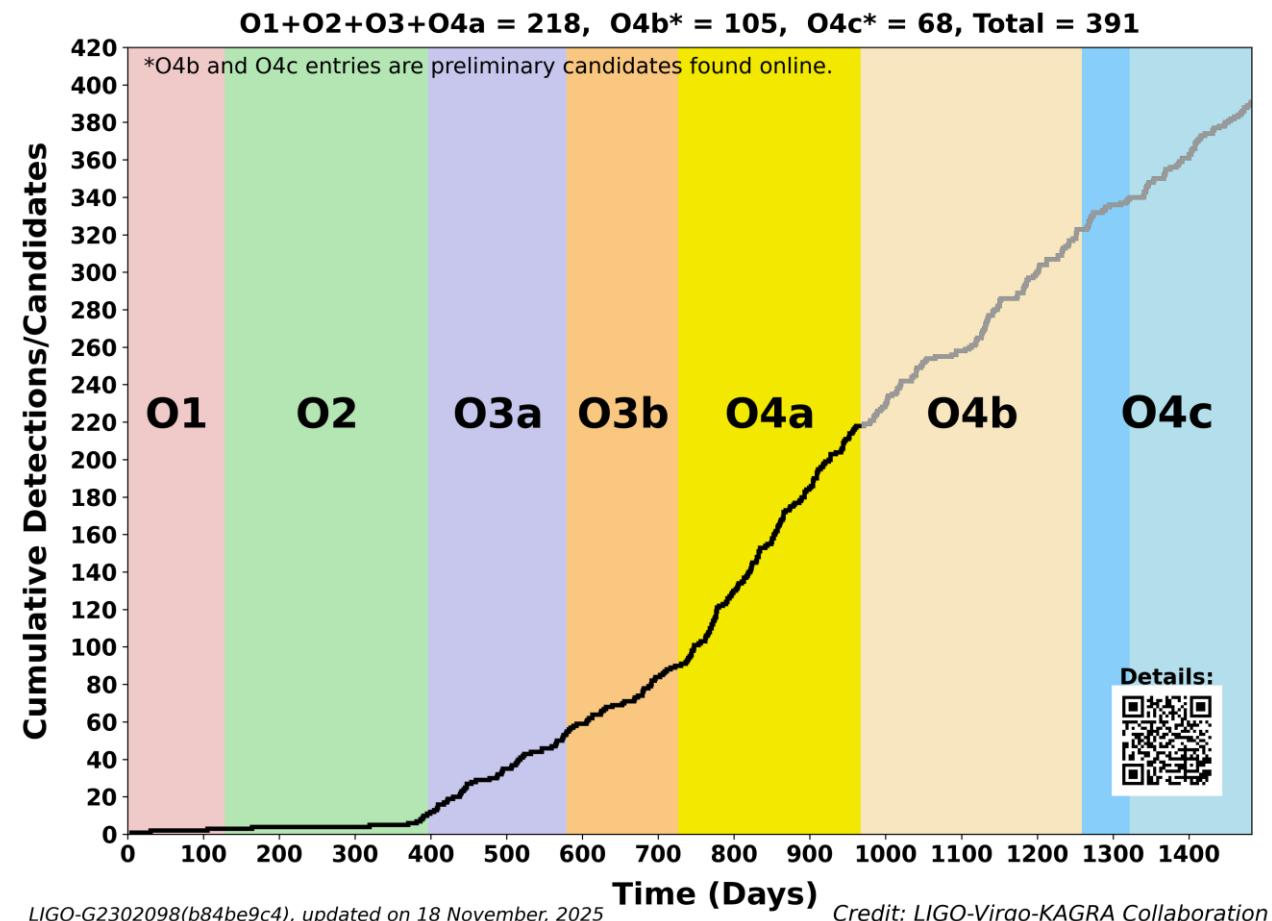
Spoiler: I won't cover the results

ALMA MATER STUDIORUM
UNIVERSITÀ DI BOLOGNA

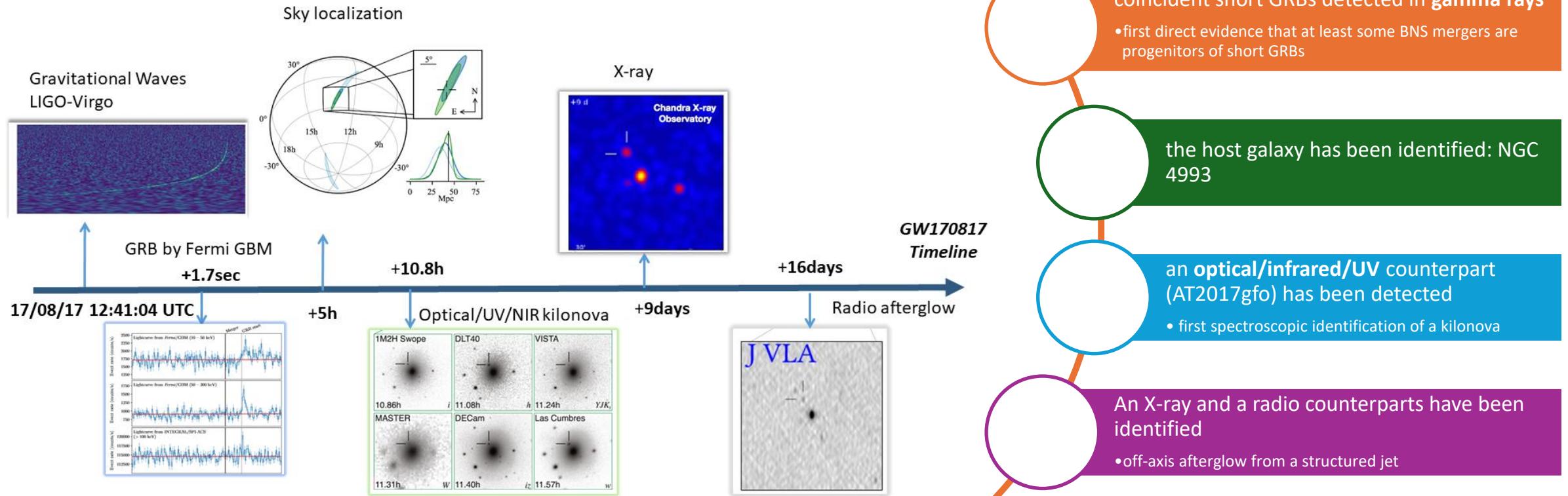
Detection summary up to O4c



<https://gracedb.ligo.org/superevents/public/O4/>



GW170817: the first Multi-messenger GW event

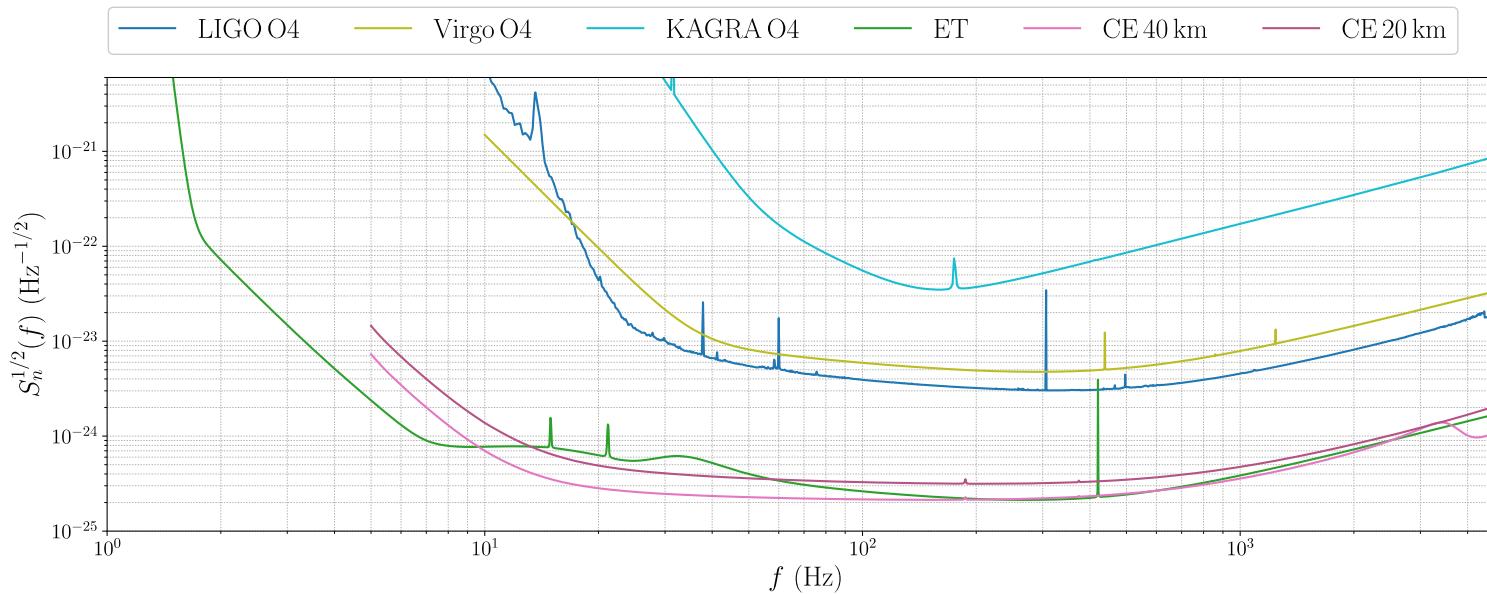
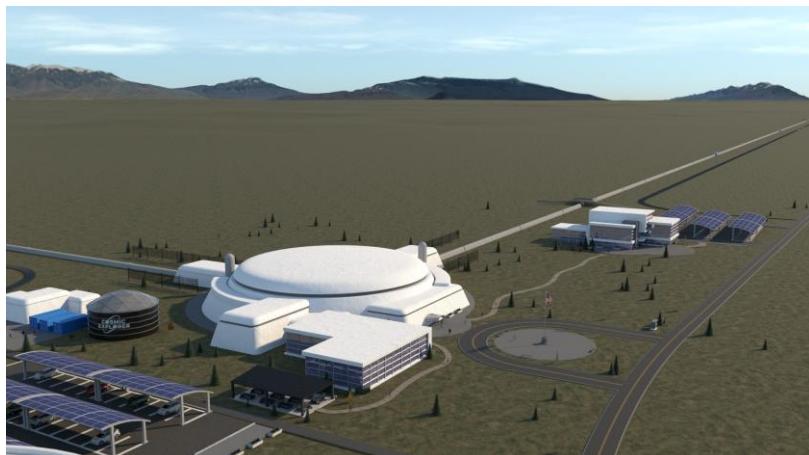


Abbott et al. 2017 and refs. therein

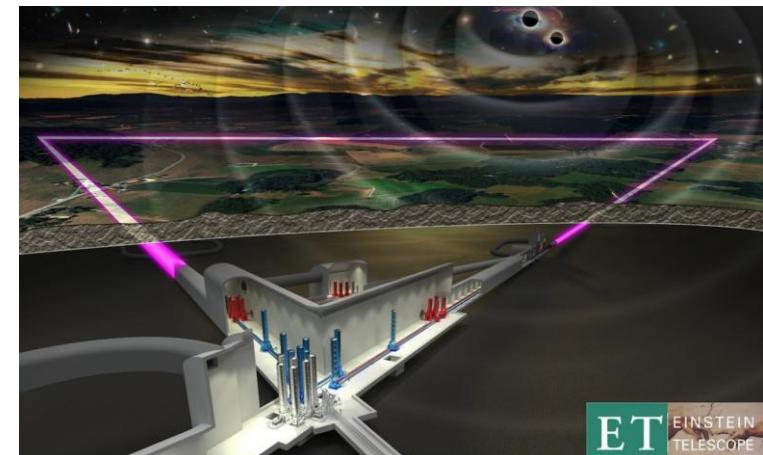
See Samaya's talk

Next generation GW detectors

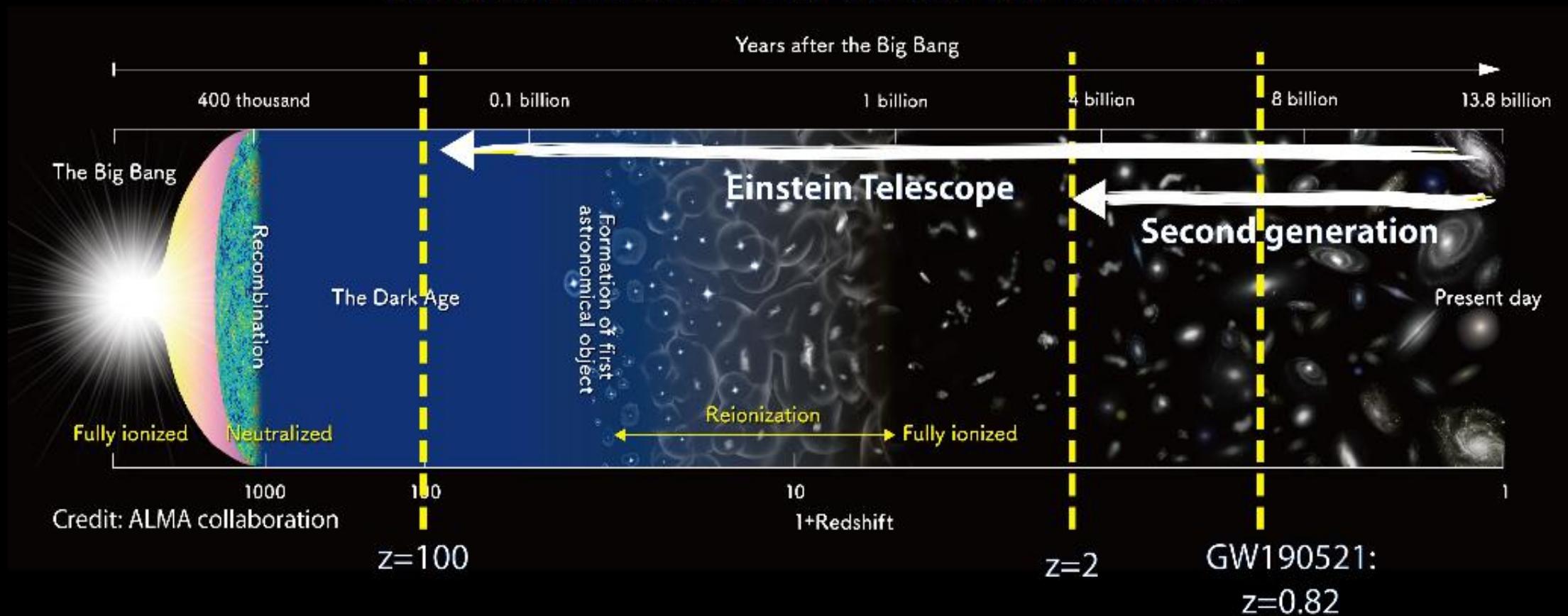
Gravitational wave detector of 3rd generation



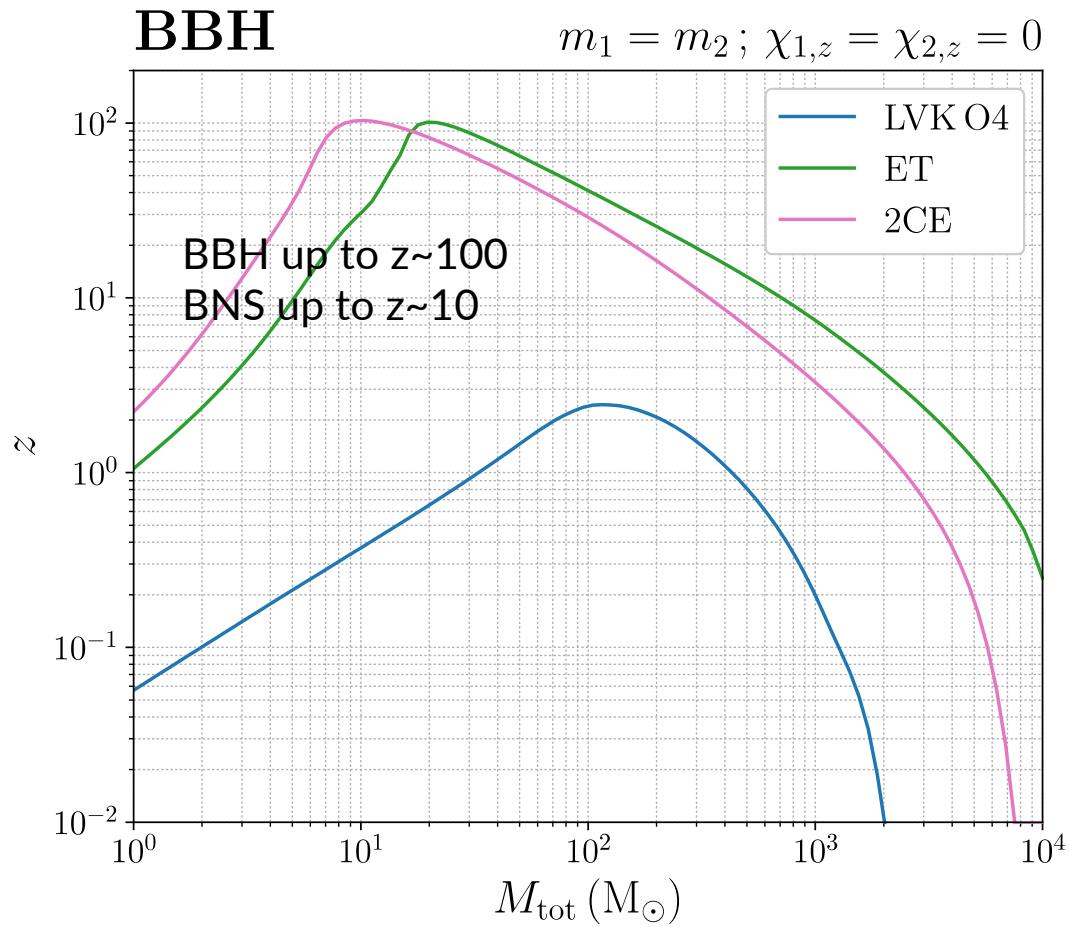
Einstein Telescope
and
Cosmic Explorer



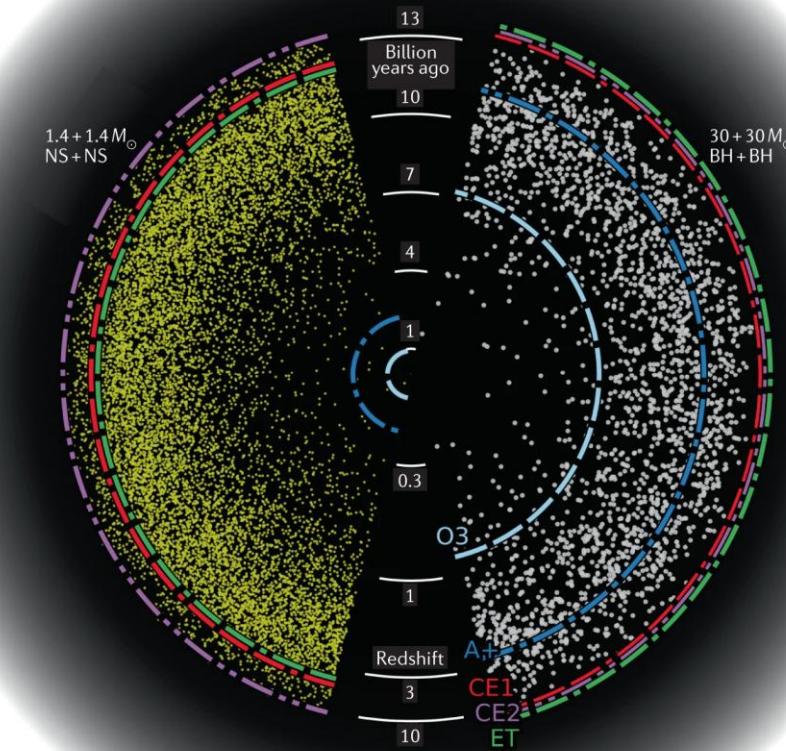
Detection horizon for black-hole binaries



3G - Horizon

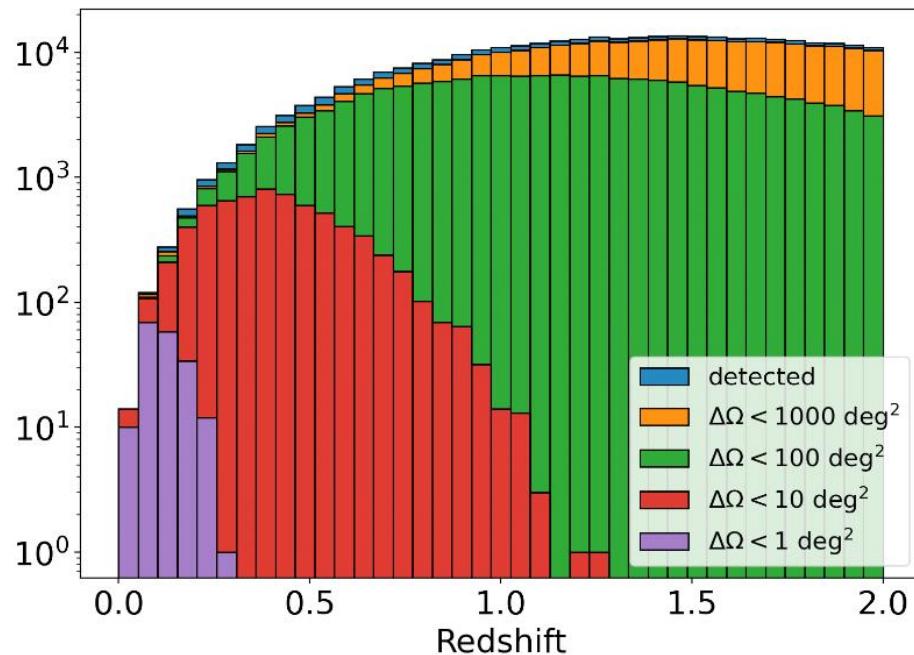


From Iacovelli et al, ApJ, 2022



MULTIMESSENGER

We expect to detect thousand of MMA/year with ET



Dupletsa et al. 2022, Ronchini et al. 2022

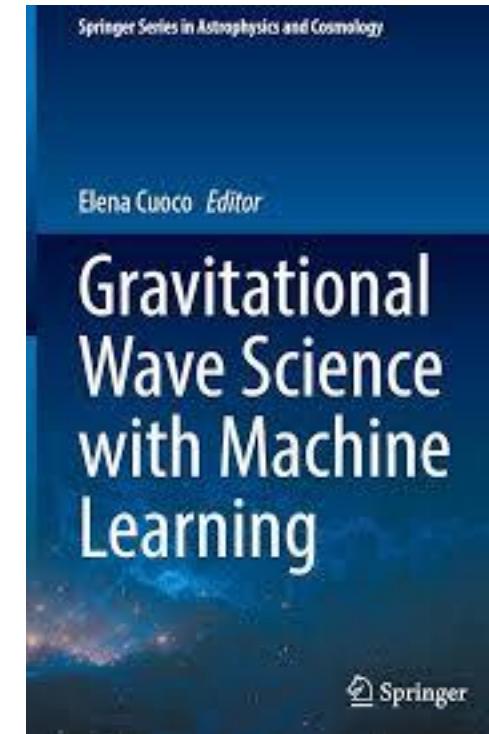
Should we panic now, or just enjoy the cosmic fireworks?

Artificial intelligence for GW science

**Multimodal Machine Learning for
Multimessenger physics**

Machine learning for Gravitational wave science

A collection of research linked to COST Action CA17137, g2net, is presented in this book



[Home](#) > [Living Reviews in Relativity](#) > Article

Applications of machine learning in gravitational-wave research with current interferometric detectors

Review Article | [Open access](#) | Published: 27 February 2025

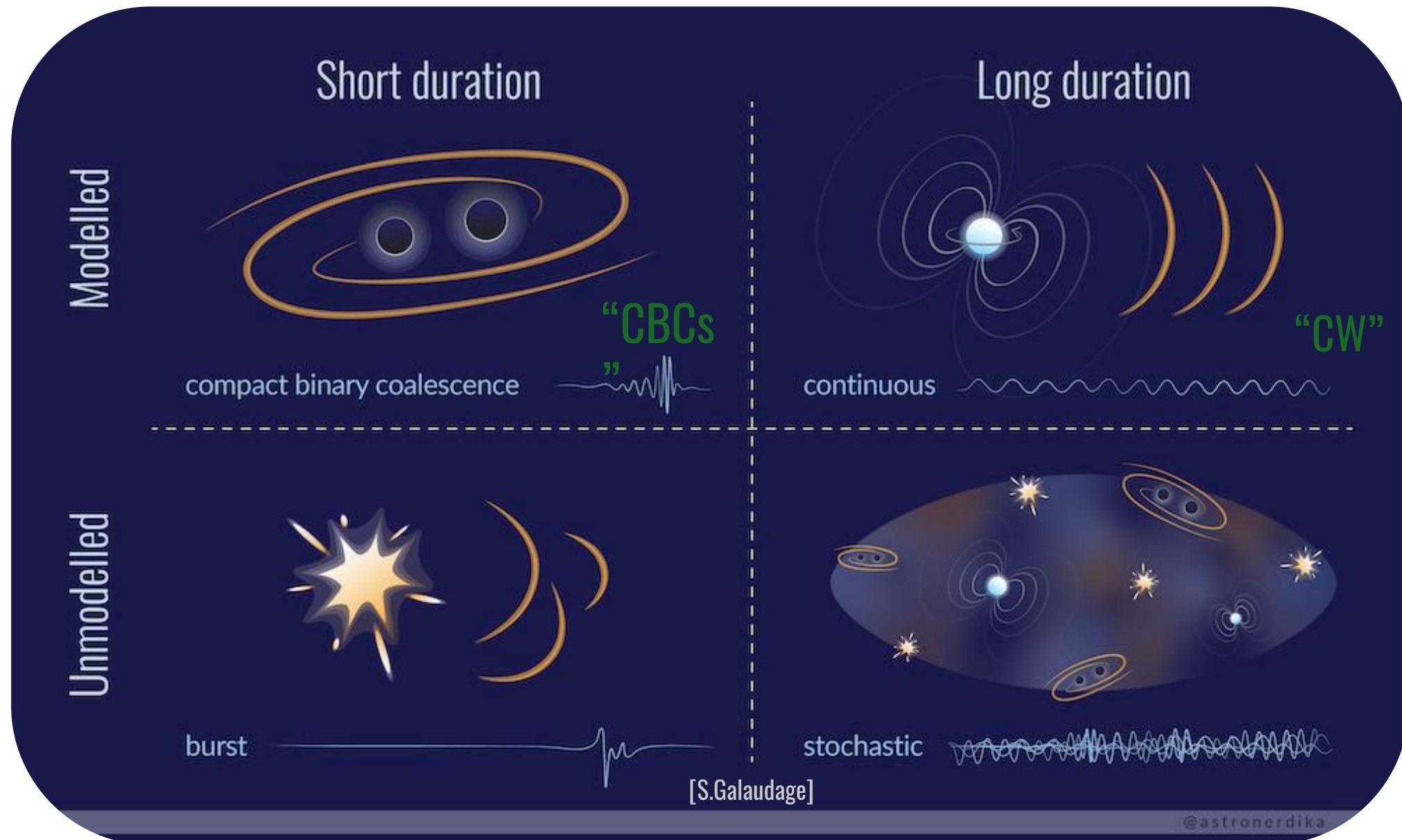
Volume 28, article number 2, (2025) [Cite this article](#)

Elena Cuoco, Marco Cavaglià, Ik Siong Heng, David Keitel & Christopher Messenger, doi:[10.1007/s41114-024-00055-8](https://doi.org/10.1007/s41114-024-00055-8)

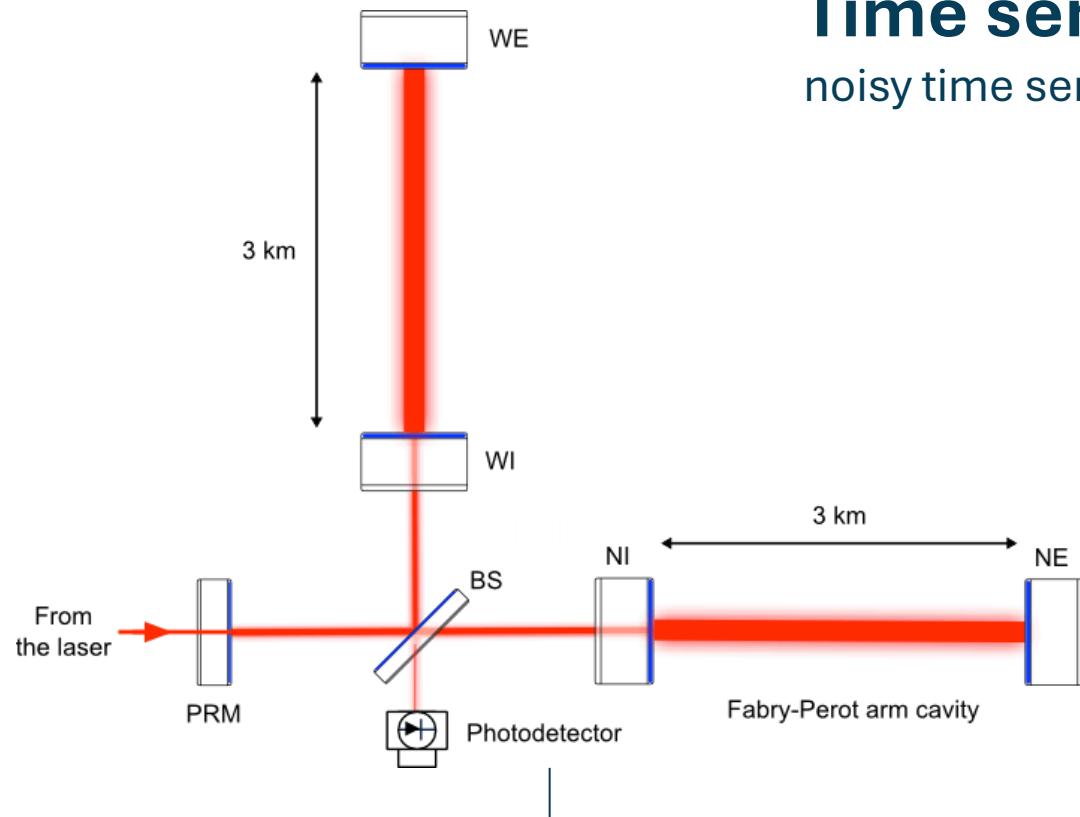
Most recent review paper

ALMA MATER STUDIORUM
UNIVERSITÀ DI BOLOGNA

LVK search types

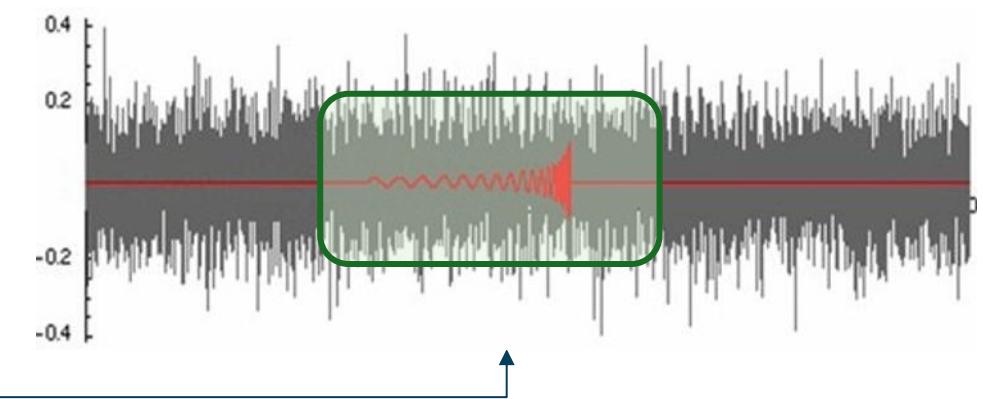


Gravitational Wave detector data

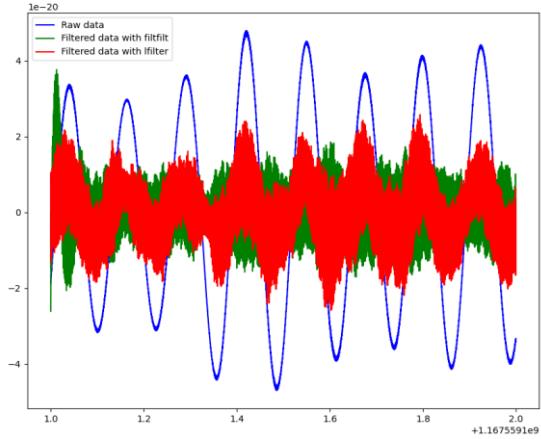


Time series sequences:

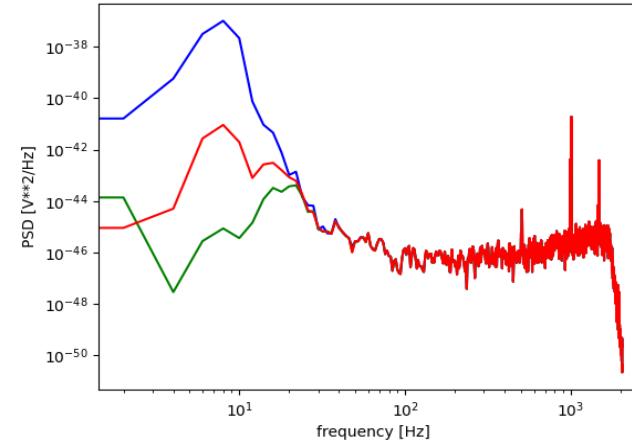
noisy time series with low amplitude GW signal buried in



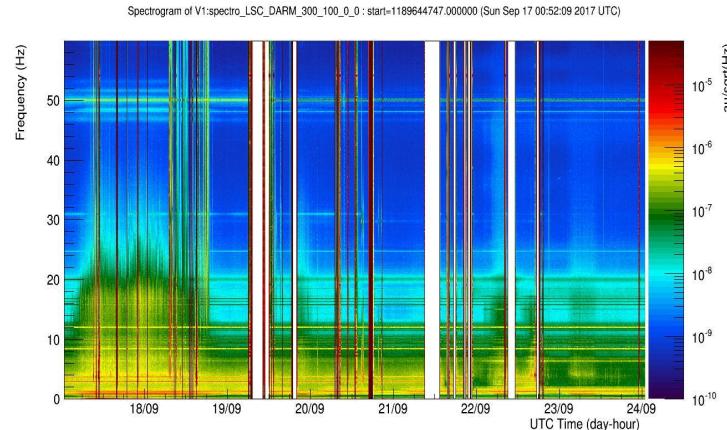
Data representations



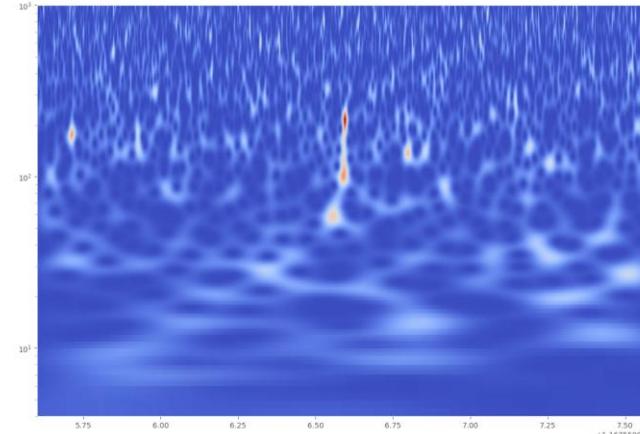
Time-domain



Frequency-domain

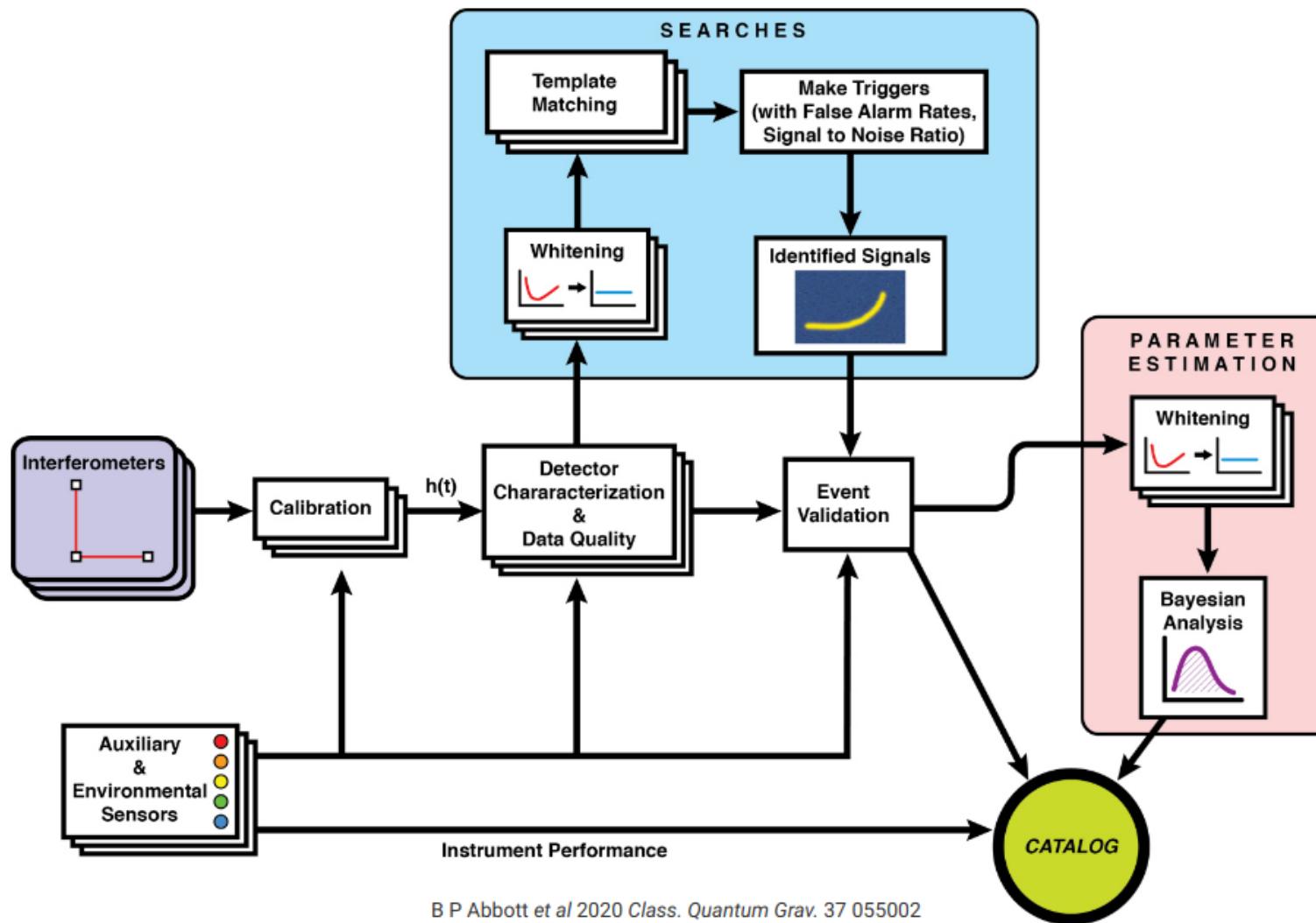


Time-frequency-domain



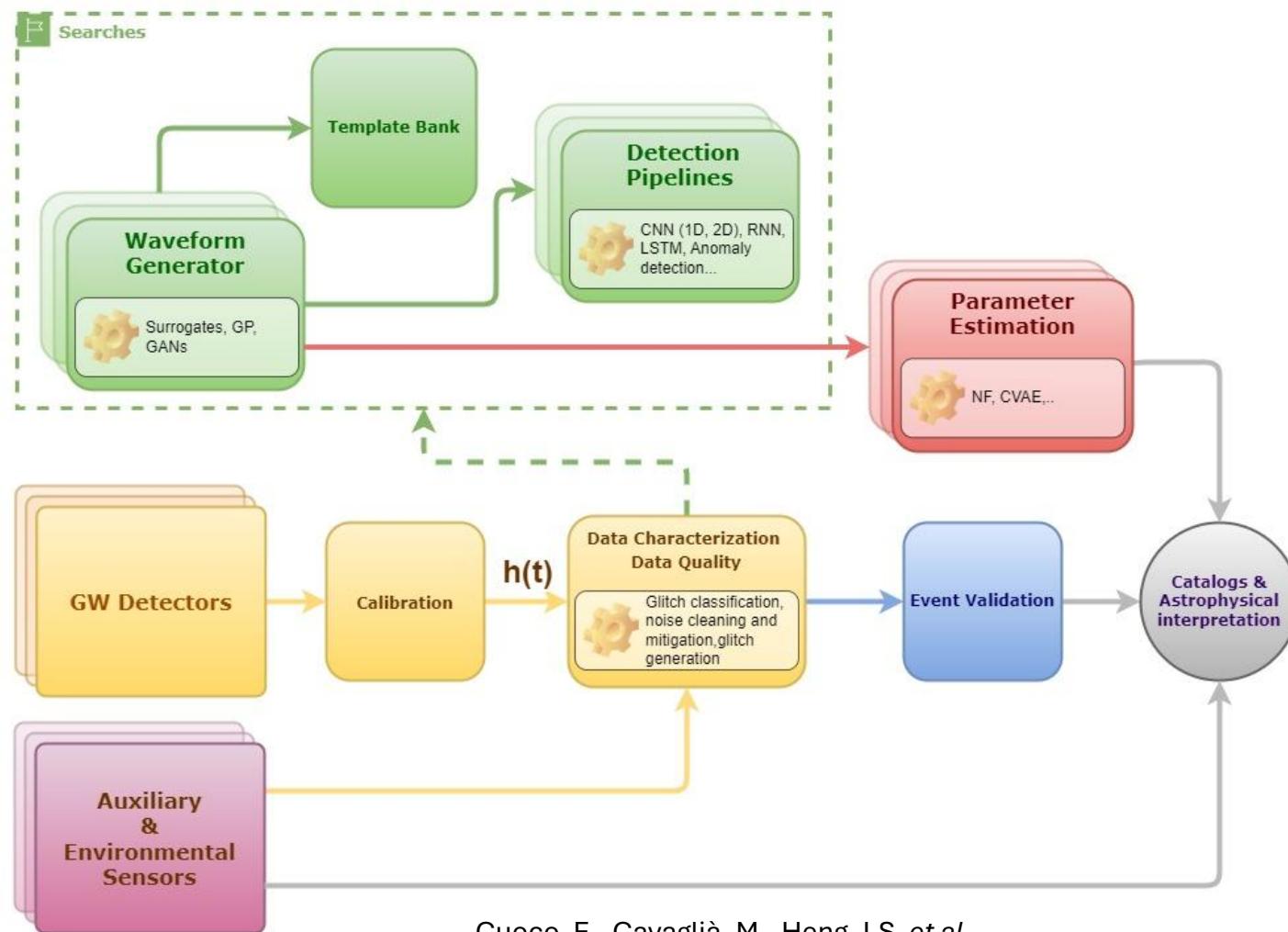
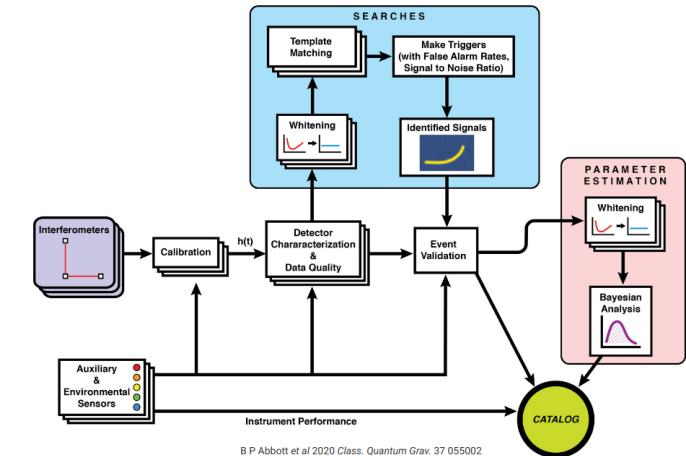
Wavelet-domain

The data analysis workflow



B P Abbott et al 2020 *Class. Quantum Grav.* 37 055002

The data analysis workflow and AI



Cuoco, E., Cavaglià, M., Heng, I.S. et al.
Applications of machine learning in gravitational-wave research with current interferometric detectors.
Living Rev Relativ **28**, 2 (2025). <https://doi.org/10.1007/s41114-024-00055-8>

“AI”/ML and gravitational waves

So, where
ML help?

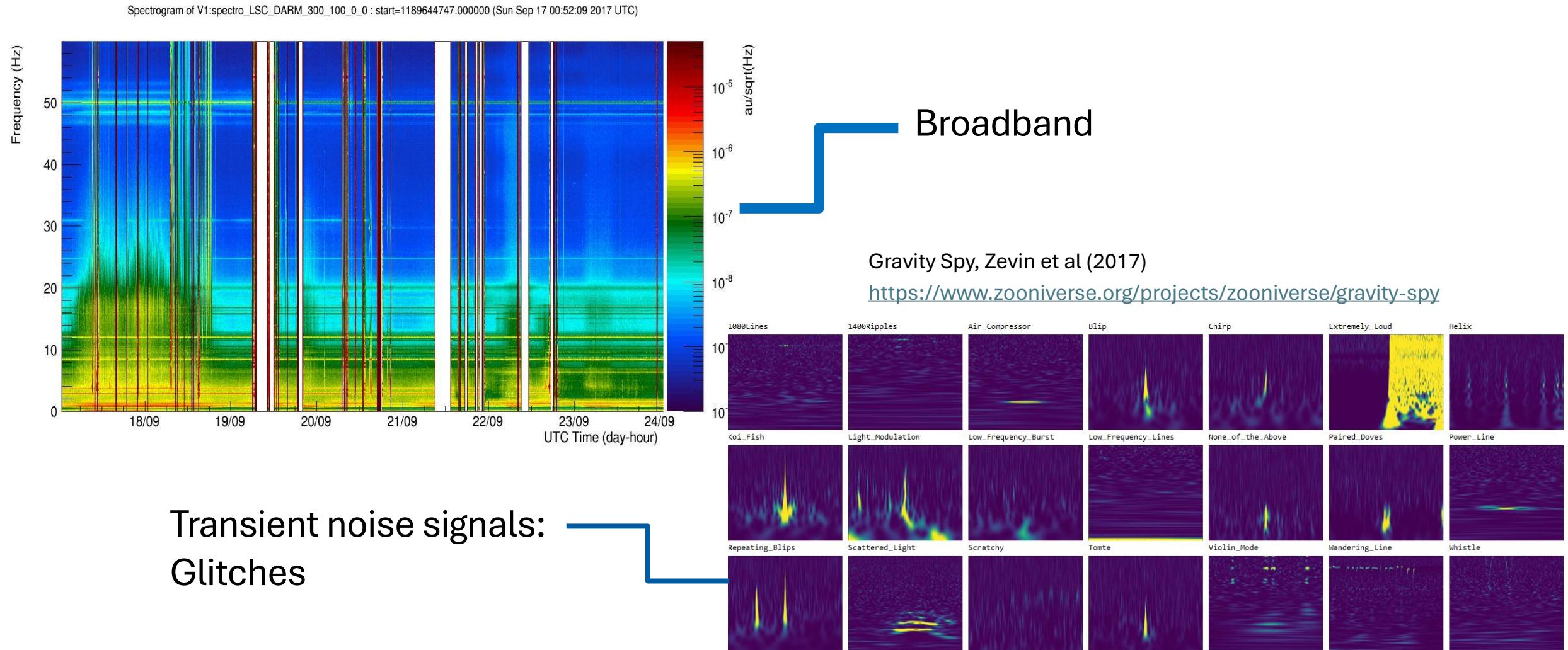
- For some signal types (e.g. CBCs, CWs) we know exactly what we’re looking for, but might not be able to efficiently cover the full generic parameter space with “traditional algorithms”.
- We also search for “unknown knowns” (waveforms that can’t be fully predicted) and “unknown unknowns”.

And why is it
difficult?

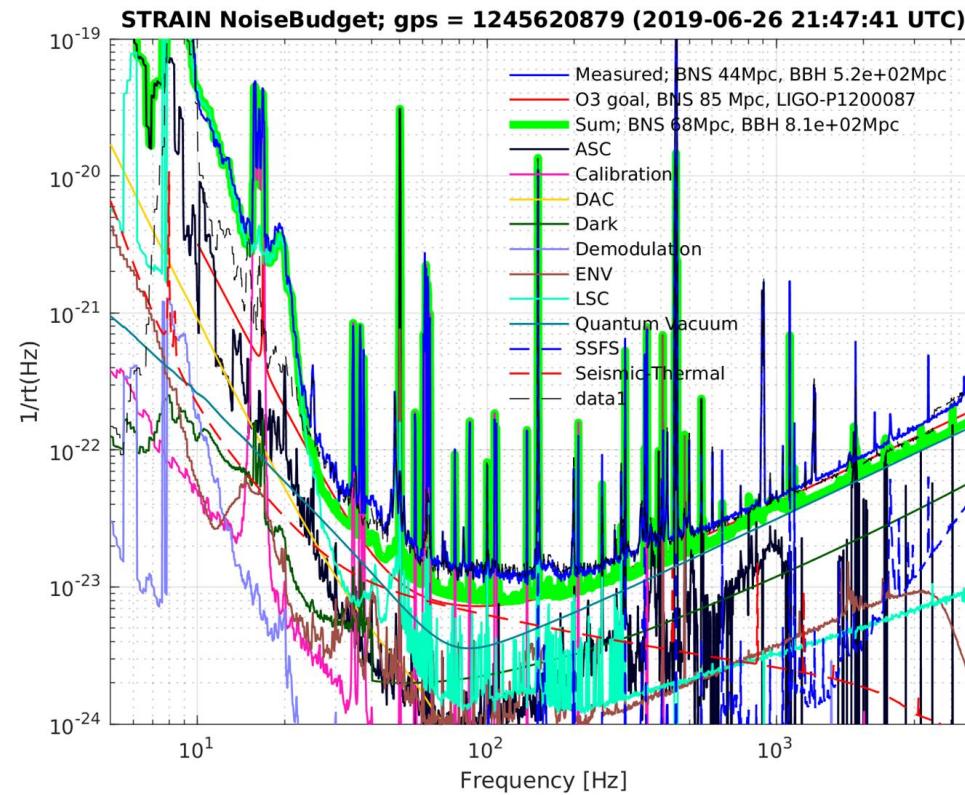
- We are looking for extremely faint signals in our detector noise: only the loudest CBCs (peak strain $\sim 10^{-21}$) can be directly “seen” in the output timeseries.

Credit goes to D. Keitel for shaping, for EuCAIFCon 2025,
Cagliari, 2025-06-16, most of the next 20 slide content you’re about to see.

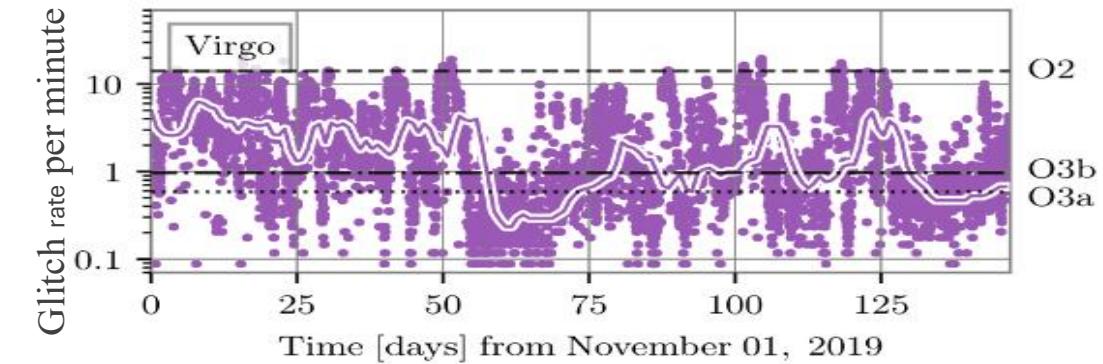
Detector noise: Is it ideal?



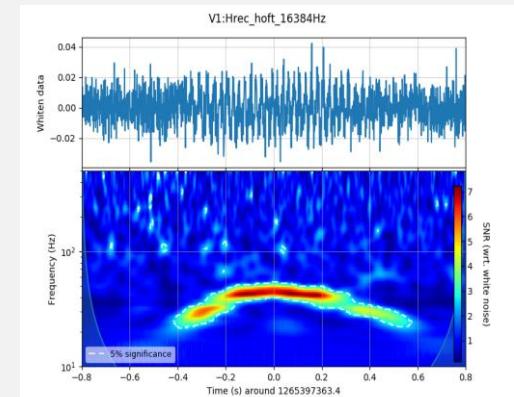
Non-stationary and transient noise



Virgo



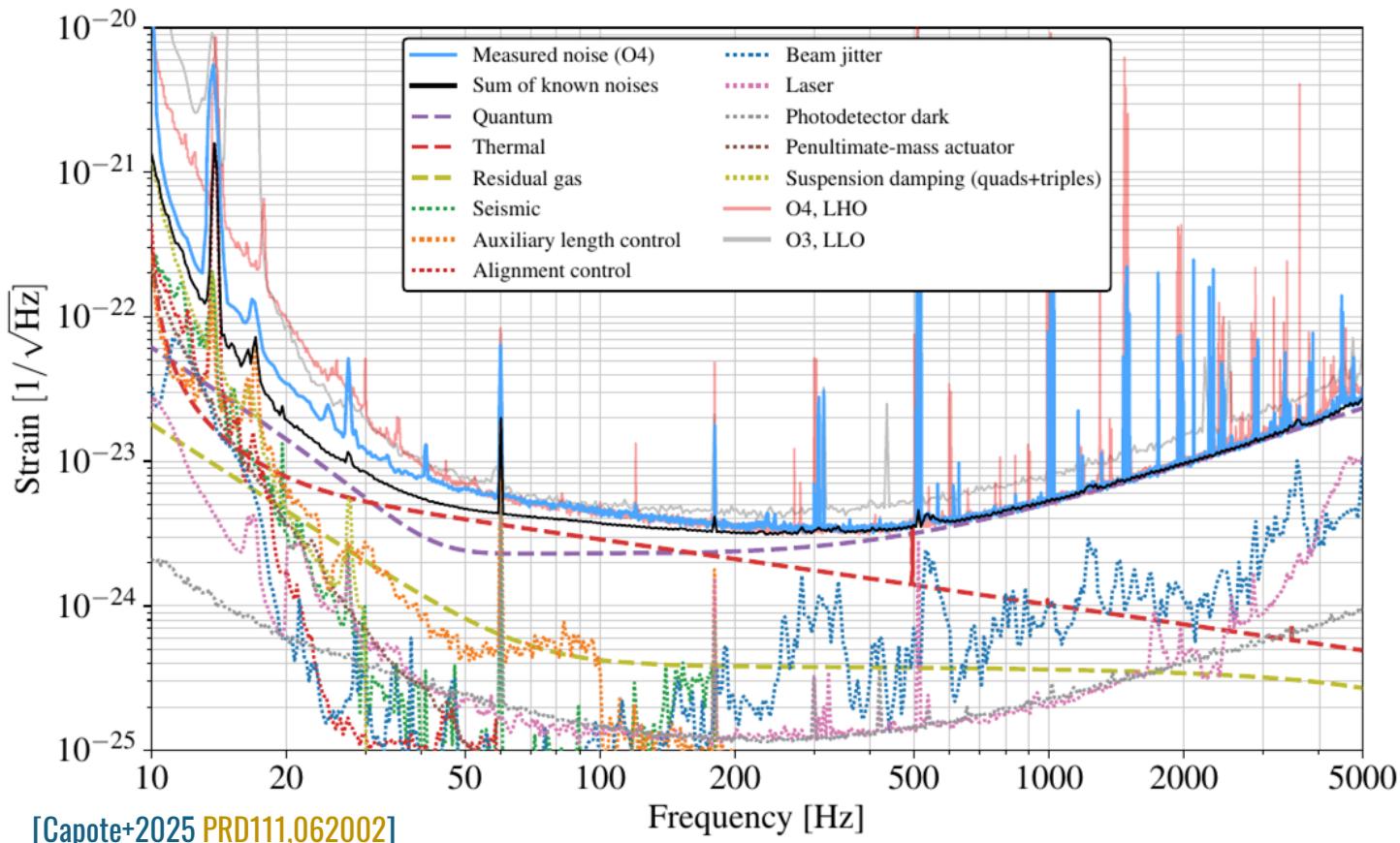
Example of Scattered light glitch



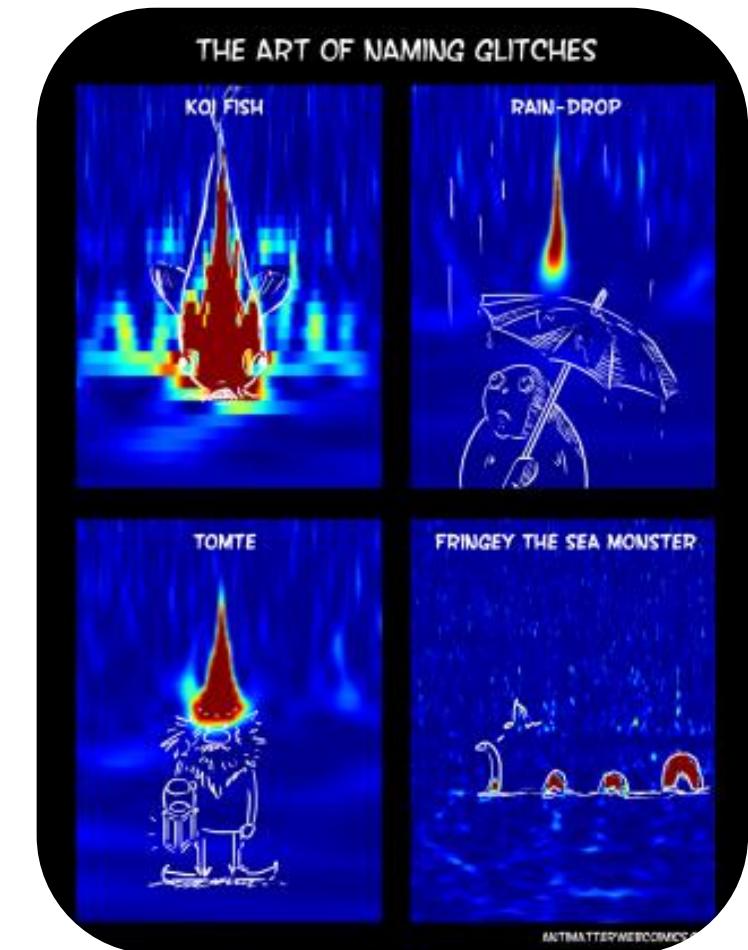
- GW detectors are extremely complex and intricate machines
- Near-Gaussian noise floor = superposition of instrumental and environmental noise sources
- Plus non-stationary and non-Gaussian components

ML for Detector design, operation and characterisation

LIGO



(b) Noise budget for the LIGO Livingston Observatory, as of October 2023.



[N. Kijbunchoo]

Detector design, operation and characterisation

ML could offer possibilities for:

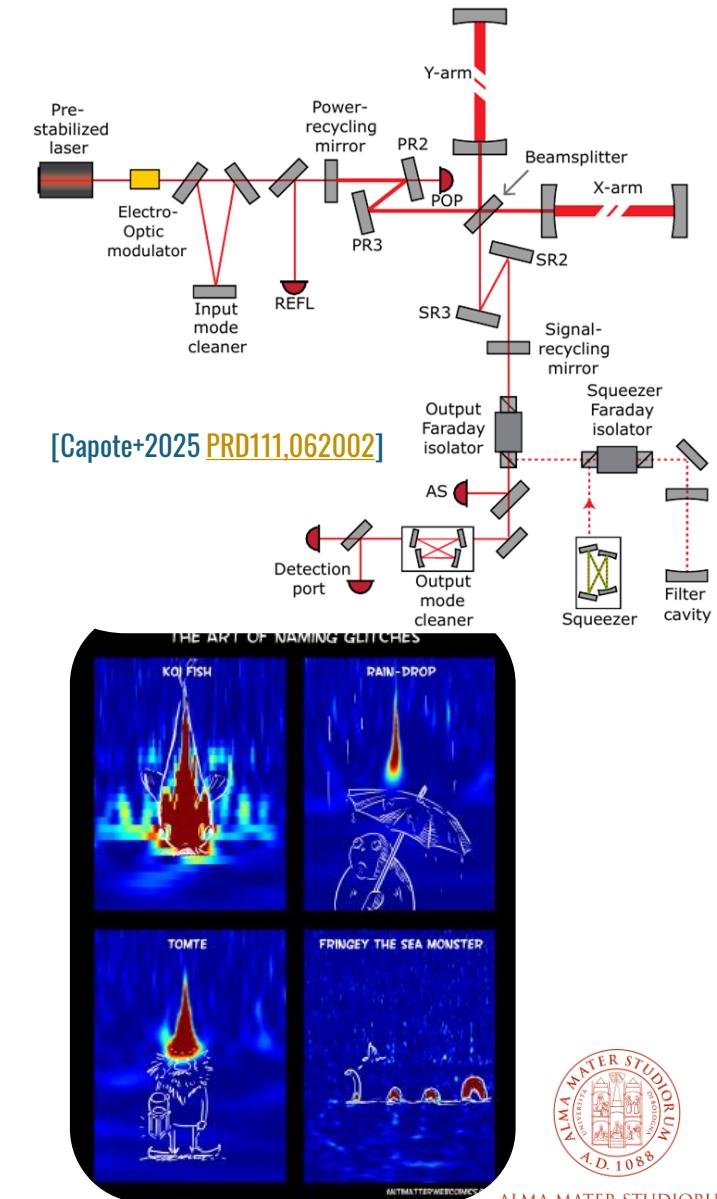
optimising detector design across an immensely-dimensional parameter space

real-time optimization of detector parameters (augmenting the control loops)

Real-time noise prediction and mitigation: correlations between environmental/instrumental monitors and the main GW strain channel

Non-linear noise regression and subtraction after data-taking

Glitch identification and removal (non-Gaussian transients)



Detector design, operation and characterisation

Some noise components have secure “witness channels”: auxiliary sensors that allow monitoring their time-varying strength and subtracting the effect from the GW strain channel

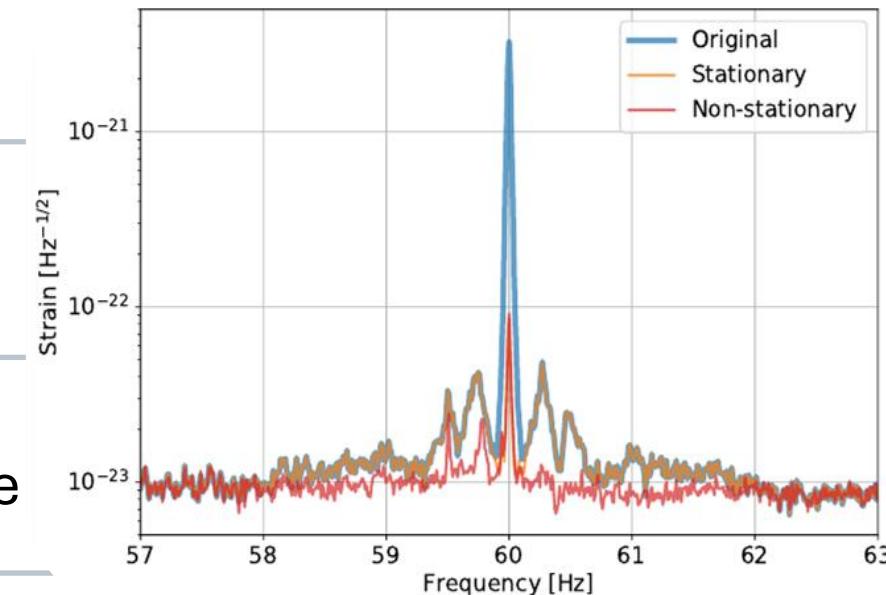
Vajente+2020
[PRD101,042003](#):
“Machine-learning
nonstationary
noise out of
gravitational-
wave detectors”
→ NonSENS:
“Non-linear
Noise
Subtraction”

parameterised model for non-linear relations
between channels

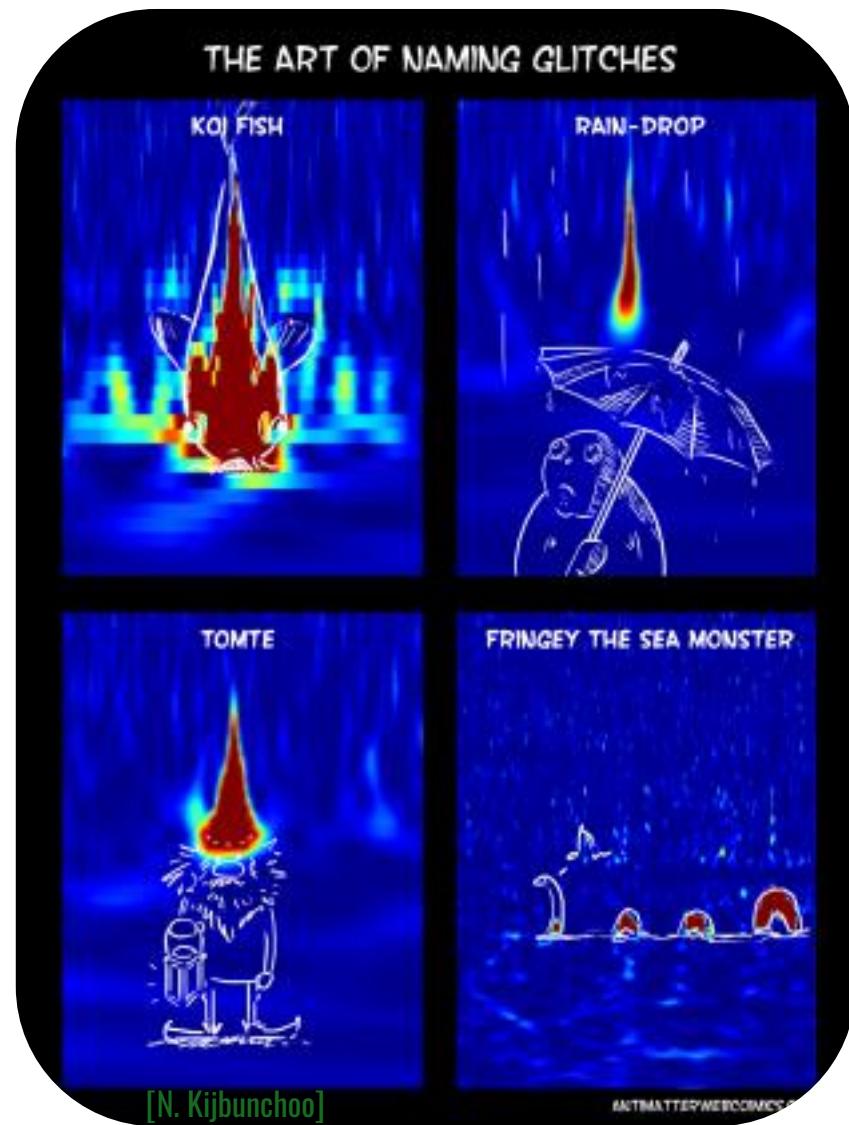
optimised with gradient descent model (ADAM)

O3: non-linear subtraction of narrowband
instrumental lines, in particular 60 Hz power line

O4: mainly to remove beam jitter noise



Detector design, operation and characterisation



- Loud, short, broadband, complex-morphology *glitches* are among the most problematic noise artifacts.
- Gravity Spy: synergy of citizen science and machine learning
 - Zevin+ 2017 [CQG34,064003](#), 2023 [EPJP139,100](#)
 - triggers flagged by excess power algorithm (“omicron”)
 - basic data unit: time-frequency spectrograms
 - initial pre-labeled data to train a CNN for pre-classification
 - volunteers on Zooniverse* confirm/refine classification
 - feedback loop to retrain the network
- results used e.g. in rapid response to online alerts
- actual glitch removal mainly with BayesWave algorithm [Hourihane+2022 [PRD106,042006](#)]

[*] zooniverse.org/projects/zooniverse/gravity-spy

CNN Glitch classification

Spectrogram for each image

2-seconds time window to highlight features in long glitches

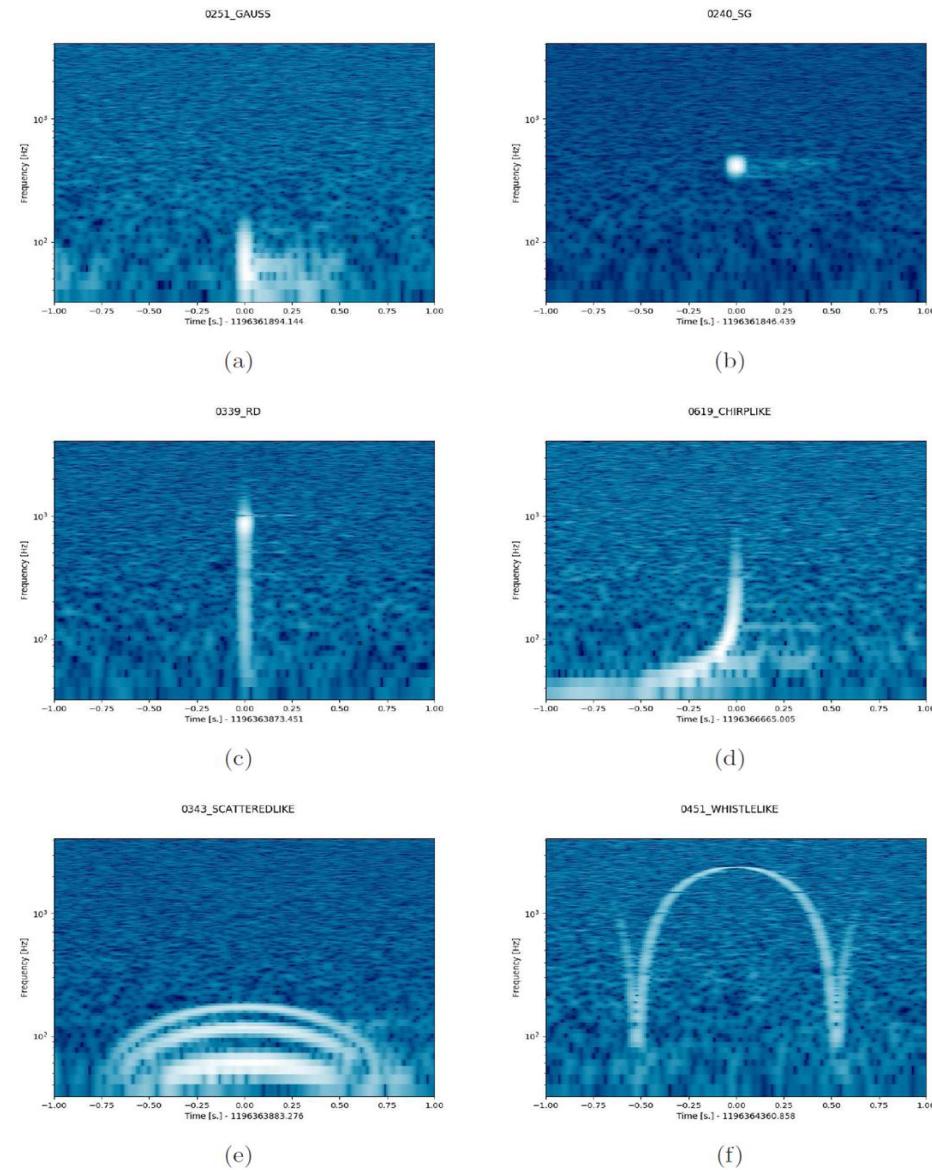
Data is whitened

Optional contrast stretch

Simulations now available on FigShare

Razzano, Massimiliano; Cuoco, Elena (2018): Simulated image data for testing machine learning classification of noise transients in gravitational wave detectors (Razzano & Cuoco 2018). figshare. Collection.

<https://doi.org/10.6084/m9.figshare.c.4254017.v1>



Detector design, operation and characterisation

Can we embed more ML/AI into the day-to-day detector operation?
(control loops, lock acquisition and loss prevention, ...) (→ e.g. YOLO point absorber detection, Goode+ [2411.16104](#))

More production uses for improved noise subtraction and glitch mitigation?
(e.g. DeepClean [Saleem+2024 [CQG41,195024](#)], DeepExtractor [Dooney+ [2501.18423](#)])

ML/AI for hunting narrow spectral lines, which especially affect long-duration signal searches?

Realistic noise simulation (e.g. Gengli glitch generator: Lopez+ [2205.09204](#))

Improved automation of calibration and detector characterisation

Control system via Reinforcement learning

Autonomous Fabry-Perot cavity locking via deep reinforcement learning

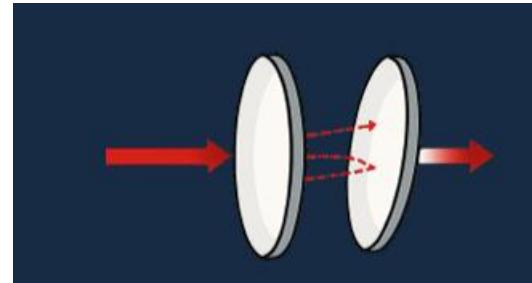
Mateusz Bawaj^{1,2}
mateusz.bawaj@unipg.it

Andrea Svizzeretto^{1,2}
andrea.svizzeretto@dottorandi.unipg.it

June 17th, 2025

EUROPEAN AI FOR FUNDAMENTAL PHYSICS CONFERENCE

¹Dipartimento di Fisica e Geologia, Università di Perugia; ²INFN, Sez.

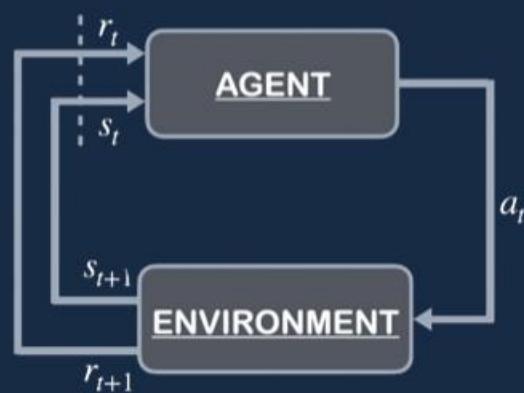
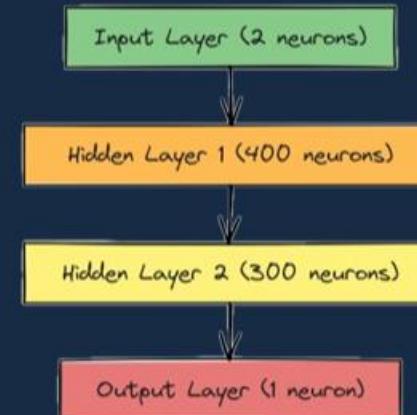


Implementation attempt ML agent

s_t – current state of the environment

a_t – action chosen by the agent

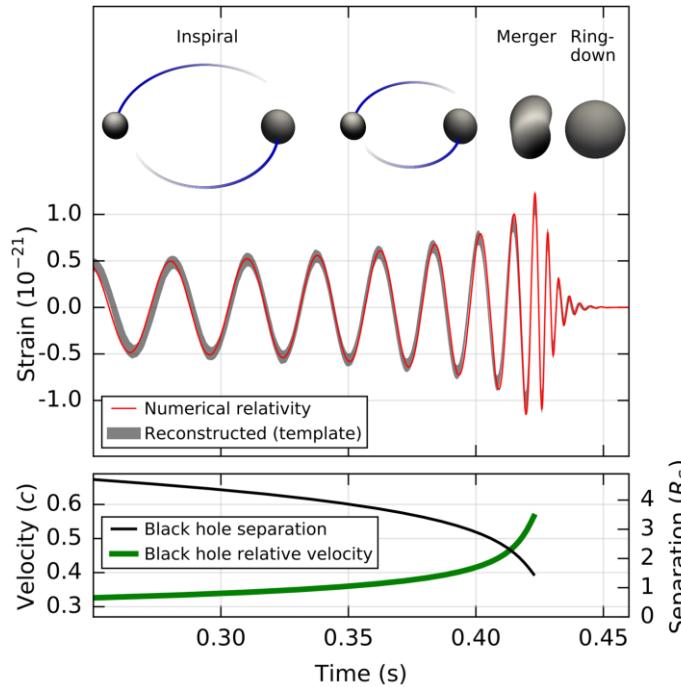
r_t – reward generated by the reward function



DDPG – Lillicrap, T. P., et al. "Continuous Control With Deep Reinforcement Learning", 2016.

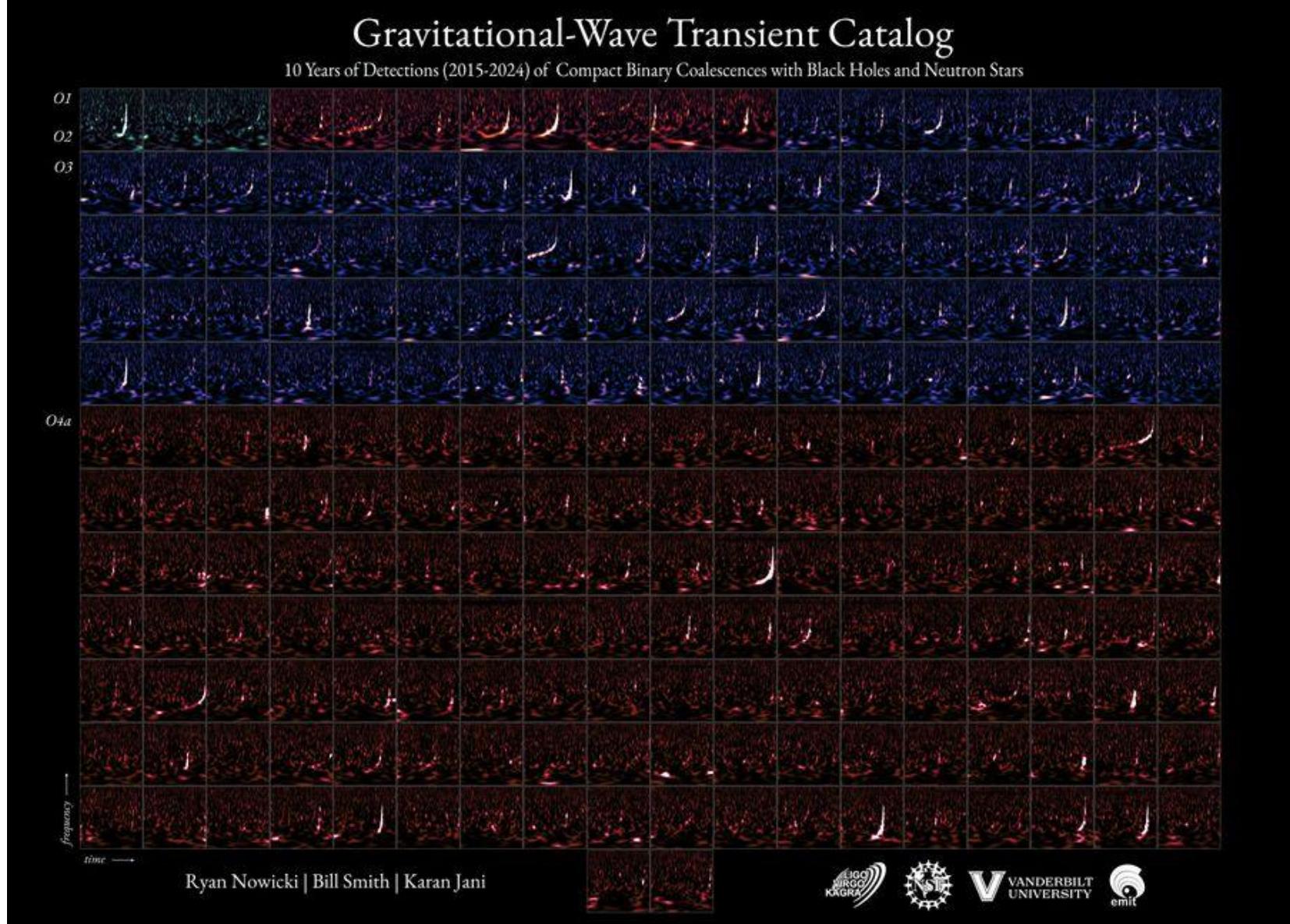
ALMA MATER STUDIORUM
UNIVERSITÀ DI BOLOGNA

CBCs



[LVC2016 [PRL116,061102](#) / [PRL116,241102](#)]

- evolution of compact objects
- tests of GR in strong-field regime
- “standard siren” cosmography
- nuclear matter at extreme densities



Compact binary coalescences

Signal waveforms can be predicted from General Relativity

“Searches”: find candidates and estimate their significance:

- multiple matched-filter pipelines (fixed template banks)
- weakly-modelled pipelines too

“Parameter estimation”: Bayesian inference

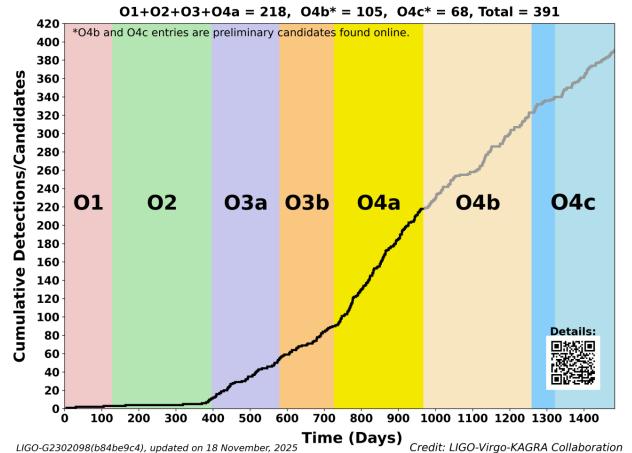
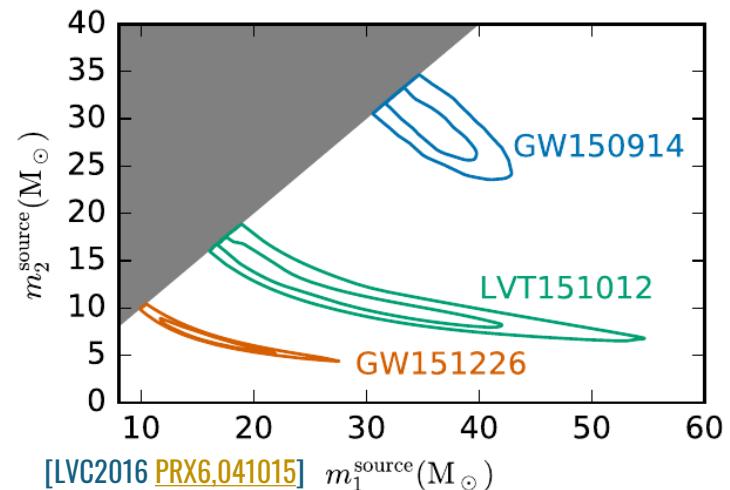
Challenges: Full generic parameter space coverage

Search efficiency in periods affected by non-stationary noise

Computational cost of full Bayesian inference

Robustness of Bayesian inference in the presence of noise glitches

Latency for public alerts (enabling telescope follow-up)



a review: Chatzioannou+
2409.02037

Compact binary coalescences – searches

- Main promise of ML: front-load computational cost to training phase, find candidates even faster
- GW g2net-Kaggle challenge* and MLGWSC-1 [Schäfer+2023 [PRD107,023021](#)]: standardised data sets to compare ML solutions to each other, and standard matched filter
- AresGW** [Nousi+2023 [PRD108,024022](#), Kolonari+2025 [MLST6,015054](#)], based on ResNet: strong performance on MLGWSC-1, 8 new GW candidates reported from O3 data
- SAGE*** [Nagarajan&Messenger [2501.13846](#)], OSNet feature extractor + ResNet/CBAM classifier: further improvements on MLGWSC-1 over AresGW and matched filter
 - paper also highlights 11 types of *biases that challenge CBC detection with ML*: training set construction, spectral bias, etc
- Caveat: ML submissions often optimised to the specific parameter space of the challenge, which could also be done to improve performance of standard methods!
(e.g. Kumar&Dent 2024 [PRD110,043036](#))

[*] [kaggle.com/c/g2net-gravitational-wave-detection](#) (2021) | [**] [github.com/vivinousi/gw-detection-deep-learning](#) | [***] [github.com/nnarenraju/sage](#)

More examples:
Trovato+2024 [CQG41,125003](#)
Marx+ [2403.18661](#)

Waveform building

PHYSICAL REVIEW D 101, 063011 (2020)

Precessing numerical relativity waveform surrogate model for binary black holes: A Gaussian process regression approach

D. Williams^① and I. S. Heng^②

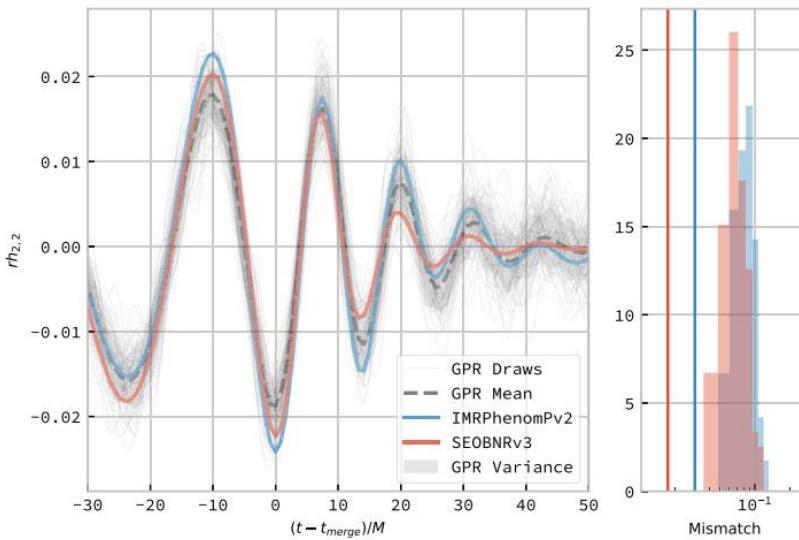
SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom

J. Gair

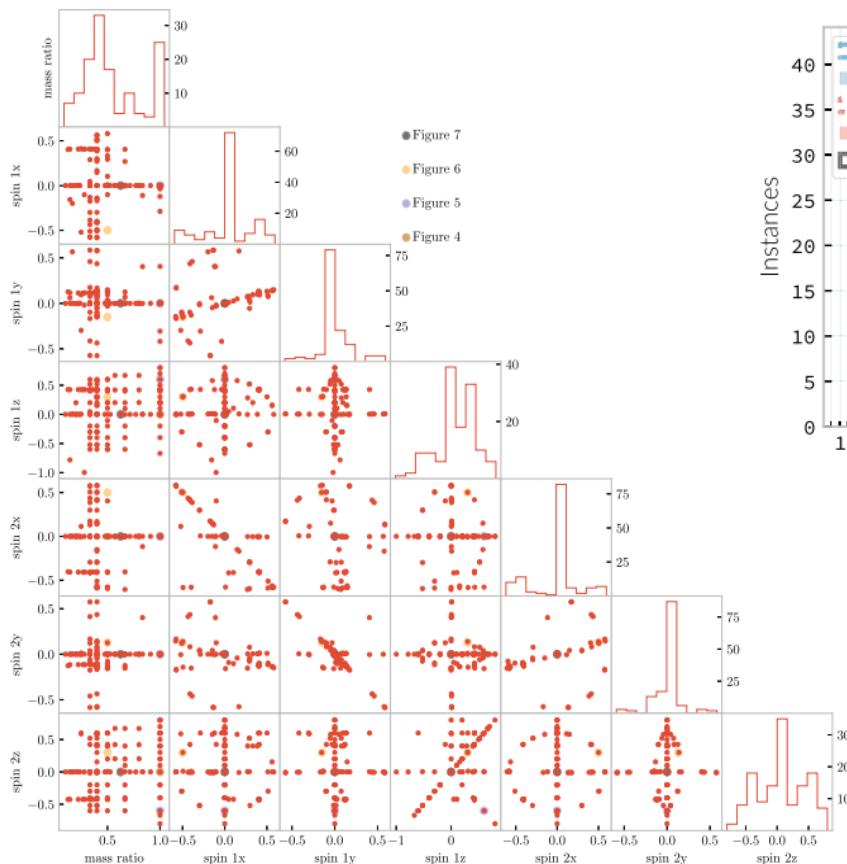
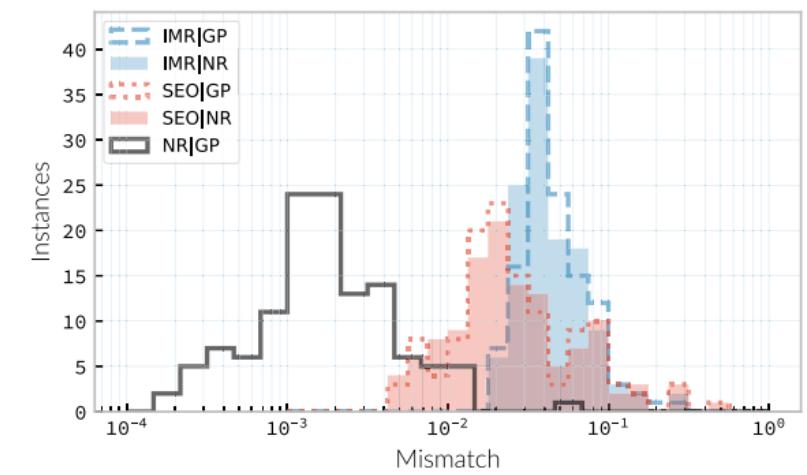
Max Planck Institute for Gravitational Physics,
Potsdam Science Park, Am Mühlenberg 1, D-14476 Potsdam, Germany

J. A. Clark and B. Khamesra

Center for Relativistic Astrophysics and School of Physics,
Georgia Institute of Technology, Atlanta, Georgia 30332, USA



- Gaussian process regression (GPR) to compute the waveform at points of the parameter space not covered by numerical relativity.
- GPR has been used to build surrogate models of both non-precessing and precessing BBH systems.



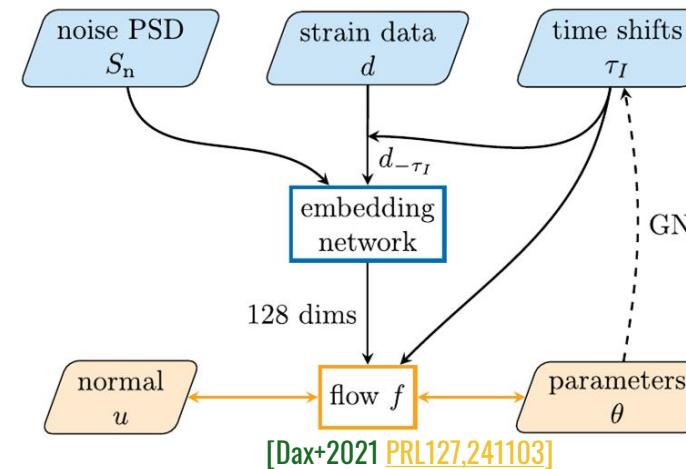
See also:

Z. Doctor et al, “Statistical gravitational waveform models: What to simulate next?”
Phys. Rev. D 96, 123011 (2017)

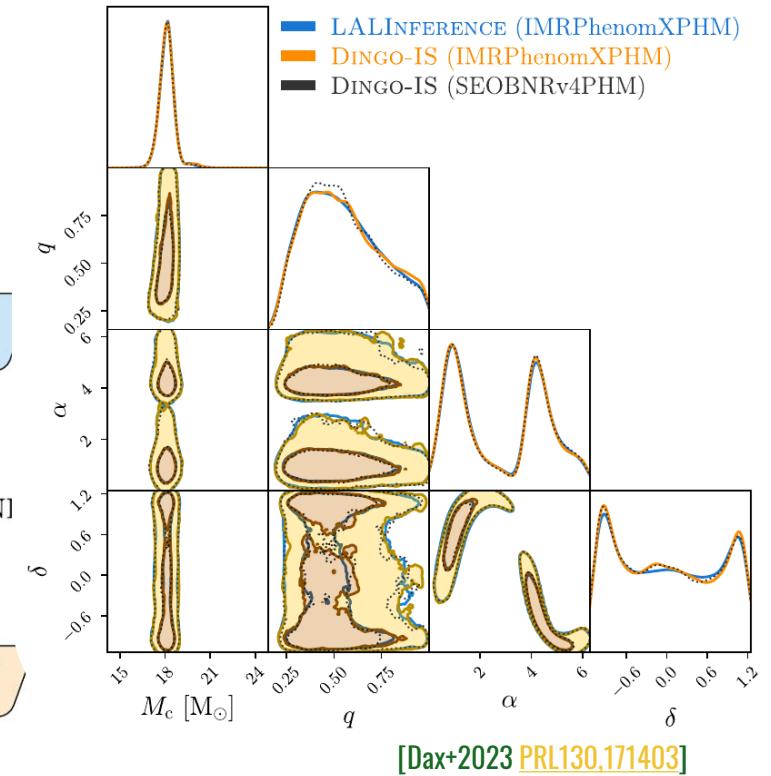
Compact binary coalescences – inference

- DINGO [Dax+2021 [PRL127,241103](#), 2023 [PRL130,171403](#)]:
neural posterior estimation (with normalising flows)
in seconds–minutes instead of hours–days per event

[\[github.com/dingo-gw/dingo\]](https://github.com/dingo-gw/dingo)



- initially working best for high-mass, short binary-black-hole signals,
now also extended to binary neutron stars [Dax+2025 [Nature 639,49-53](#)]
- special promise for otherwise extremely expensive waveforms,
e.g. including orbital eccentricity [Gupte+ [2404.14286](#)]



Other examples:

Nessai: Williams+2021 [PRD103,103006](#)
Peregrine: Bhardwaj+2023 [PRD108,042004](#)
AMPLFI: Chatterjee+ [2407.19048](#)

Compact binary coalescences

Optimal network architectures and training methods to deal with the typical kinds of biases identified by [2501.13846](#) and with the full complexities of real detector data

Fair comparisons between ML and “traditional” search algorithms, avoiding fine-tuning

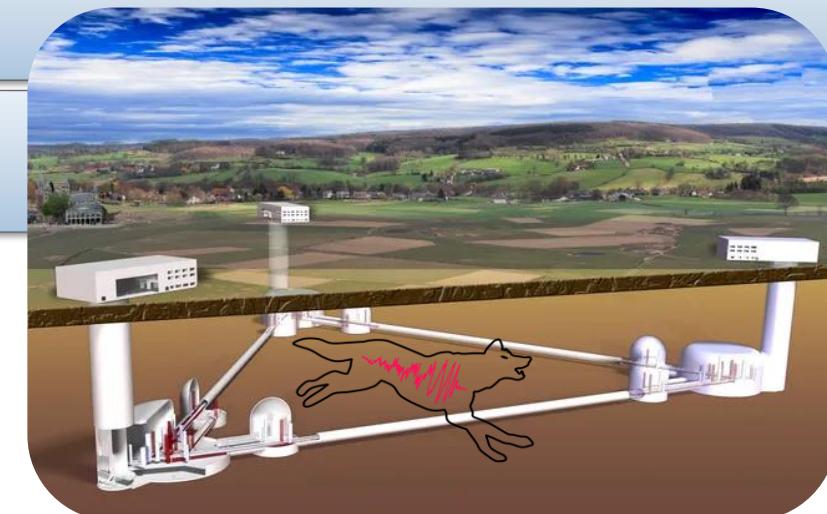
Finding the right mix for fruitful coexistence of fast neural and “full” Bayesian inference

Passing detailed LVK scientific&code review and operational stability criteria for production runs, including low-latency alerts ([gracedb.ligo.org](#) | [emfollow.docs.ligo.org/userguide](#))

ML in waveform modeling itself

Future detectors:

- longer signal durations
(e.g. Hu+[2412.03454](#), Dax+2025 [Nature 639,49-53](#))
- huge detection rates (→ overlapping signals!)
(e.g. Langendorff+2023 [PRL.130.171402](#), Alvey+ [2308.06318](#), Santoliquido+ [2504.21087](#))



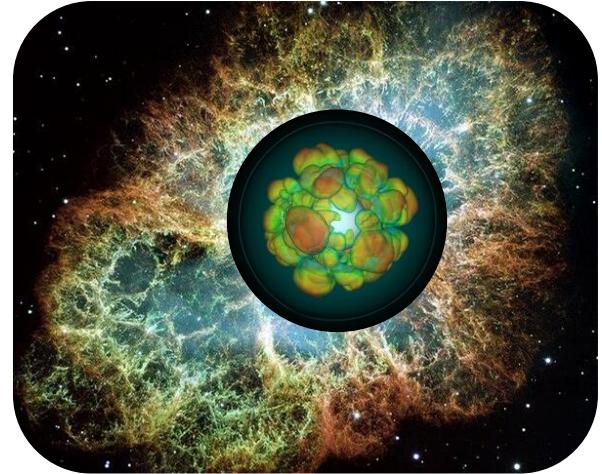
GW bursts

Less well-modeled GW transients: eccentric BBHs, supernovae, magnetars, cosmic strings

Search with more generic methods:
excess power, pattern recognition, ...

No detections so far. (Besides BBHs!)

Non-detections can still yield physical constraints:
nearby supernovae, glitching pulsars, ...

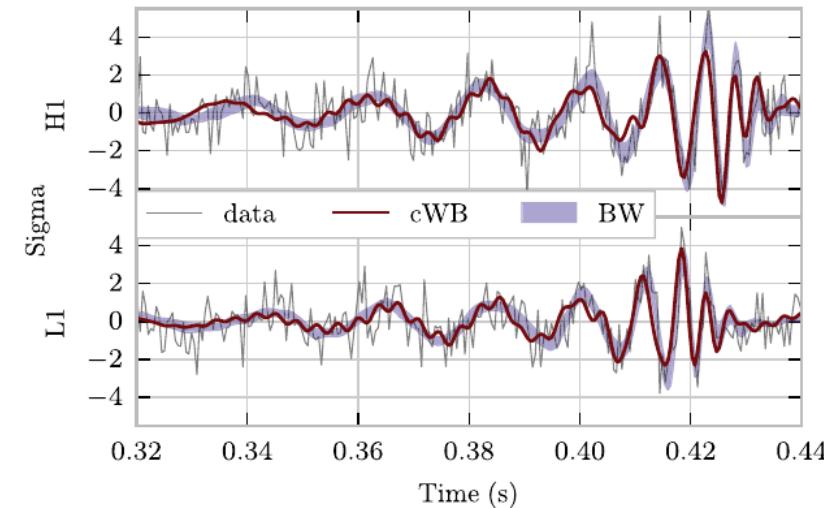
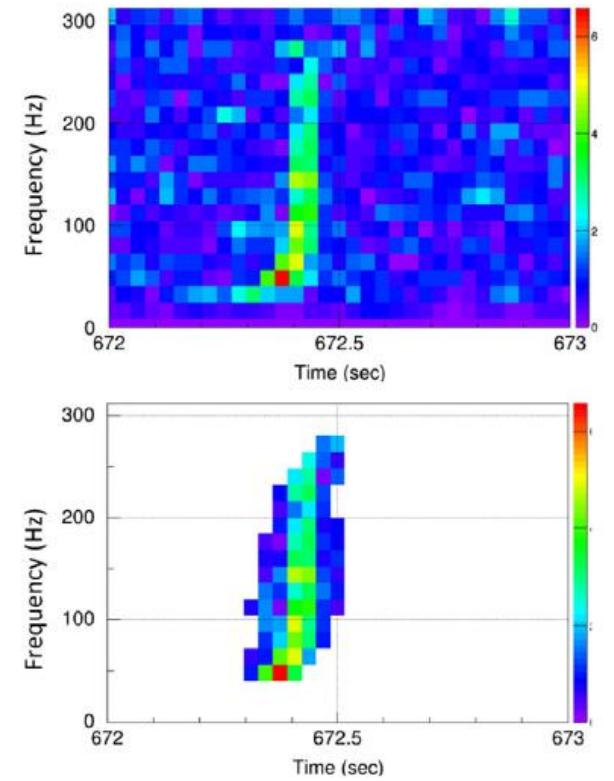


[NASA/ESA/ASU]

ALMA MATER STUDIORUM
UNIVERSITÀ DI BOLOGNA

GW bursts

- Less well-modeled GW transients: eccentric BBHs, supernovae, magnetars, cosmic strings,... and unknown unknowns!
- Most LVK algorithms based on some form of *excess power* and searches for correlated structures in time-frequency spectro
- Also possible *coherently* across multiple detectors
- Basically: anomaly detection and pattern recognition
- Weakly-modeled techniques, such as wavelet decomposition, also allow *signal reconstruction*

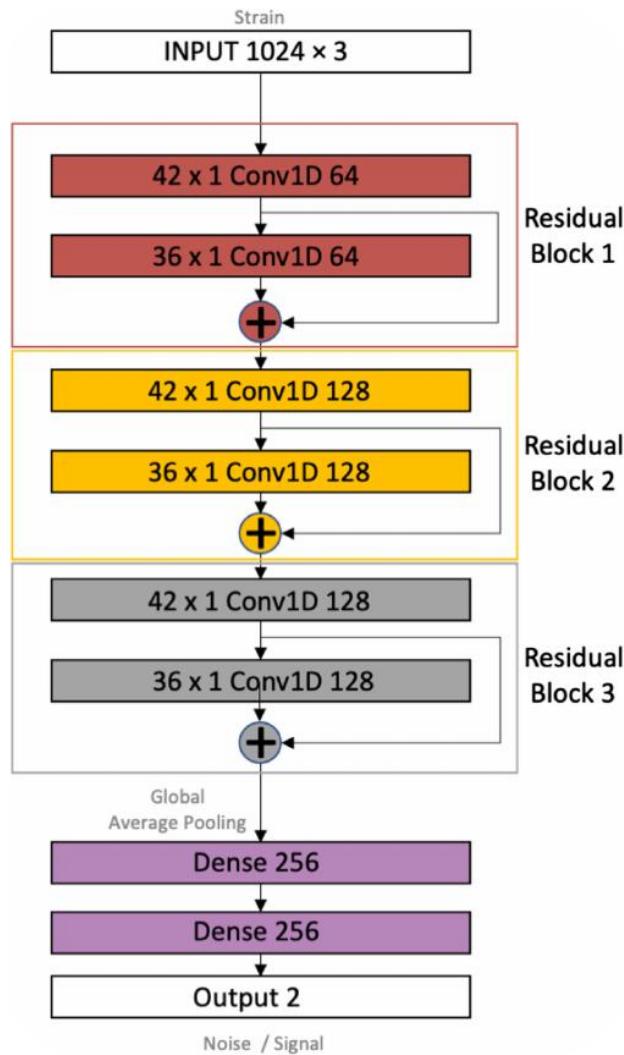
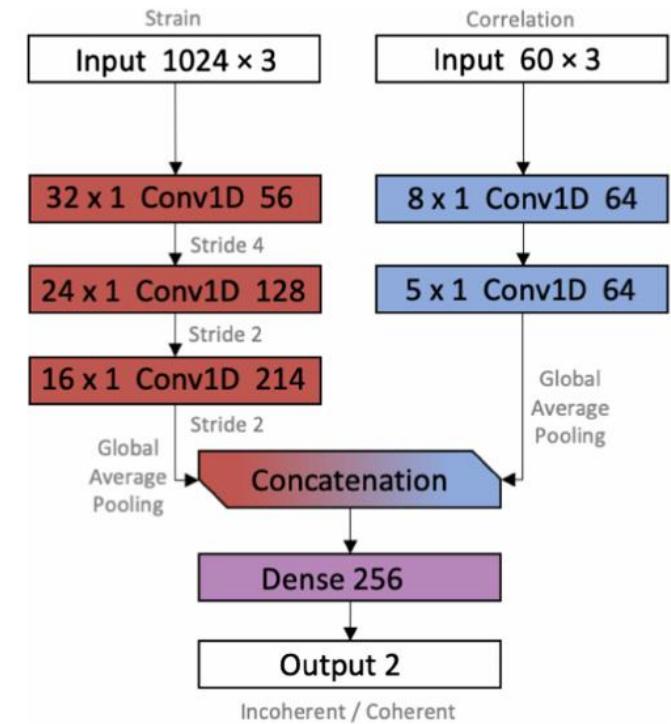


[Drago+2021 [JsoftX14,100678](#)]

[LVC2016 [PRD93,122004](#)]

GW bursts. ML pipeline example

- MLy pipeline
 - Skliris+2024 [PRD110,104034](#)
 - [git.ligo.org/mly/mly](#)
- Dual architecture for coincidence and coherent modes across detectors
- First tested on LIGO-Virgo O2 data
- Now LVK-reviewed and running “in production” on O4 data
[\[emfollow.docs.ligo.org/userguide/analysis/searches.html#unmodeled-search\]](#)



GW bursts

Besides pure ML pipelines like MLy, also “traditional” ones getting enhanced with ML ingredients, e.g. XGBoost postprocessing for cWB [gwburst.gitlab.io] – Mishra+2021 [PRD104,023014](#) → used on O3 data in Szczepańczyk+2023 [PRD107,062002](#), Mishra+2025 [PRD111,023054](#)

Bridging the gap between “modelled” and “unmodelled burst” analyses for complicated sources like supernovae, with simulation-based inference etc.

Pure anomaly detection frameworks for the known unknowns (e.g. GWAK, Raikman+2025 [MLST5,025020](#) and [2412.19883](#))

Interpretable/explainable AI to understand what is being detected?

Continuous Waves

Simple signal model → matched filtering

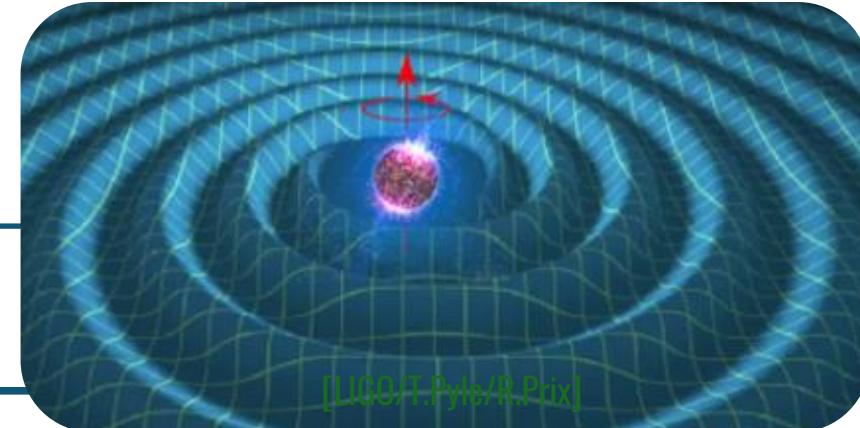
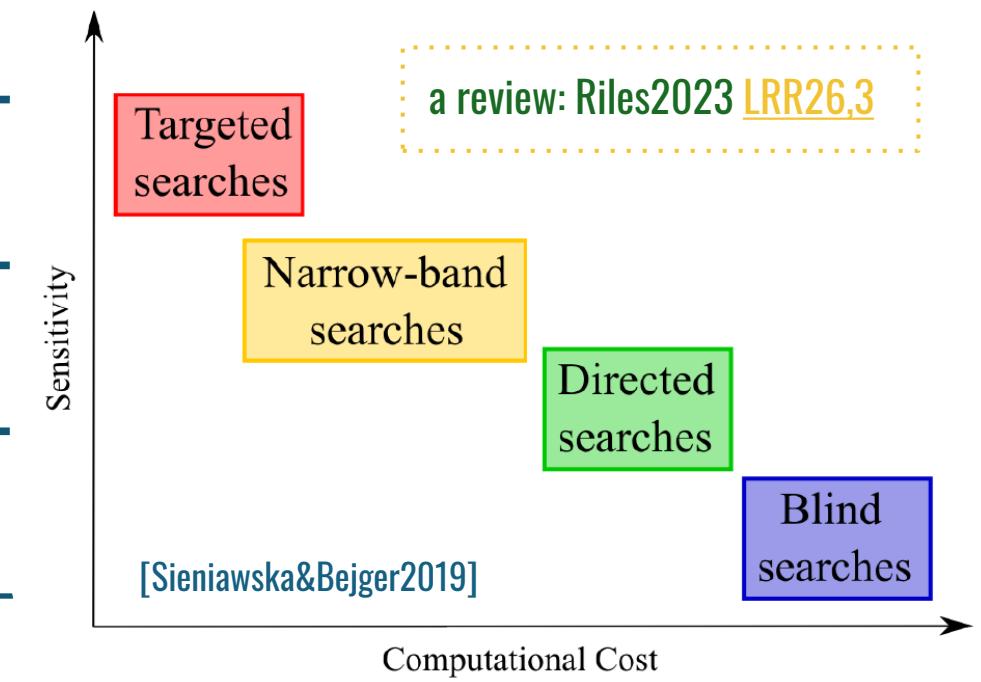
Optimal fully-coherent analysis possible for known pulsars with full timing model from EM observations

Computationally extremely challenging for *unknown* sources: large parameter space and extremely fine required grid resolution

Semi-coherent methods provide best tradeoff so far between sensitivity and computing cost

Similar issues for long-duration CW-like transients from glitching pulsars, BNS remnants, ...

G2net-Kaggle challenge* mostly produced GPU-optimised variants of “traditional” semi-coherent methods



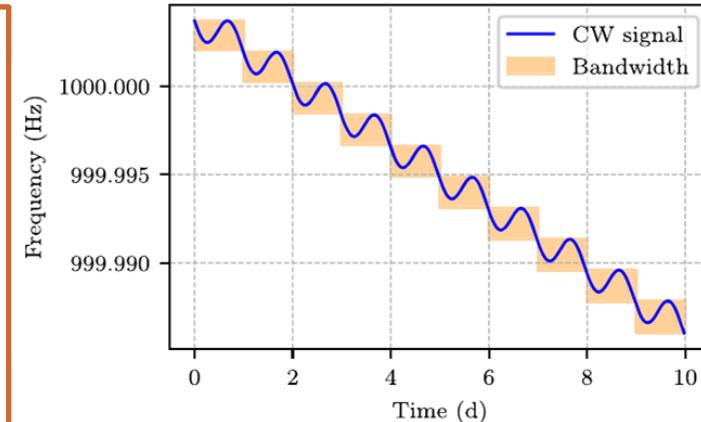
Continuous Waves

Joshi&Prix 2023: “*Novel neural-network architecture for continuous gravitational waves*”
[[PRD108,063021](#)]

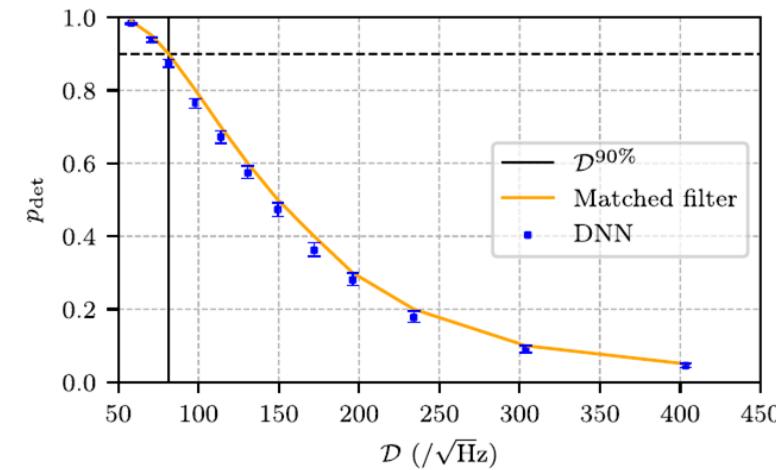
For durations up to 10 days, customised CNNs can almost reach matched-filter performance, but not yet quite.

Identified the key challenges of neural networks applied to CWs:

- signals not only faint, but spread across long durations, with low local contrast and rich structure
- morphology changes across parameter space, Doppler shifts become more challenging at high frequencies

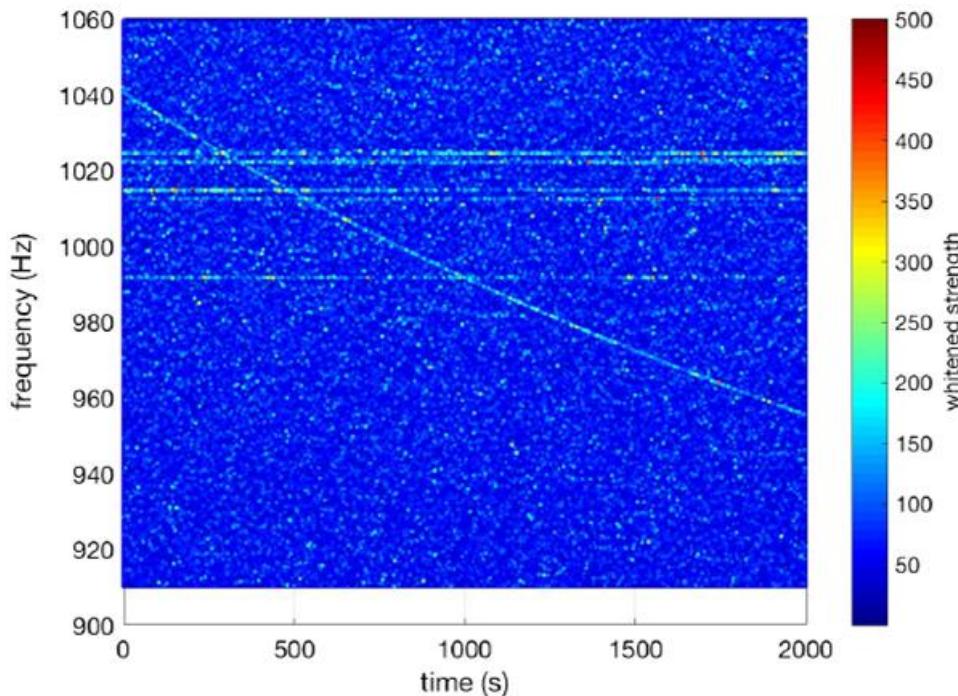


Joshi&Prix 2024
[[PRD110,124071](#)]:
can also generalise to a single network trained across 20–1000 Hz



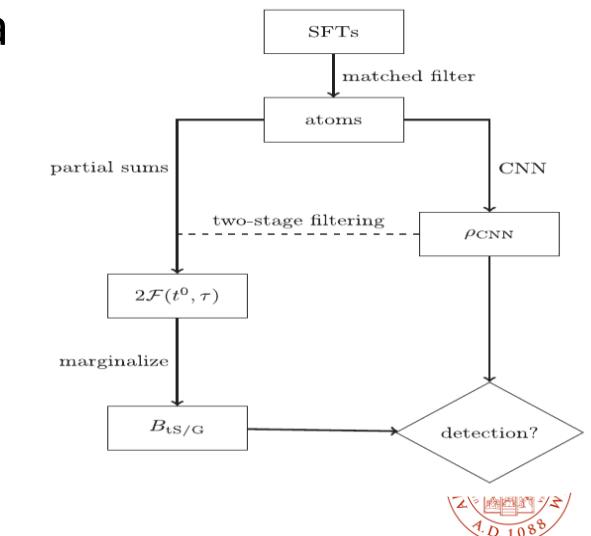
Continuous Waves(-like long transients)

BNS merger remnants: rapid spindown



- Miller+2019 [PRD100,062005](#): *How effective is machine learning to detect long transient gravitational waves from neutron stars in a real search?*
- Using CNNs on spectrograms

- Pulsar glitches can trigger CW-like transients of unknown duration
- Modafferi+2023 [PRD108,023005](#): *Convolutional neural network search for long-duration transient gravitational waves from glitching pulsars*
- Hybrid approach: CNN on matched-filter intermediate data products



Continuous Waves

Still working towards a “first detection” with *any* method (“traditional” or ML)

Immense sensitivity gap between optimal fully-coherent matched filter and what is computationally feasible over large parameter spaces (factors 5–50 in “depth” below the detector noise floor)

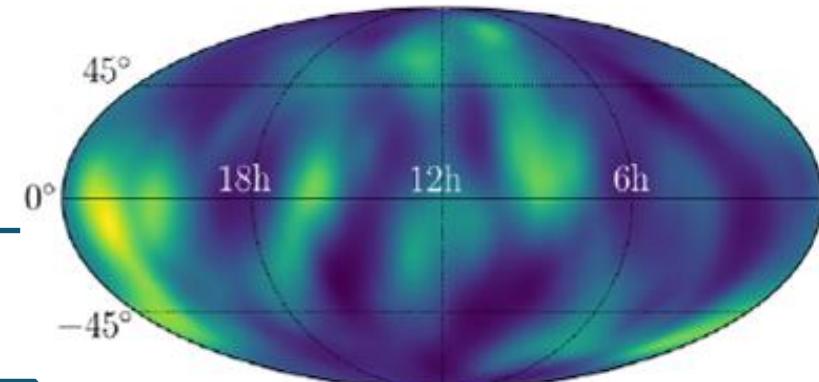
Neutron stars are known to be “messy” → make methods more robust to signal deviations?

Need to overcome the challenges identified by [PRD108,063021](#) and others:

- very faint signals, with even fainter local contrast and complex morphologies, that vary strongly across parameter space

Stochastic signals and backgrounds

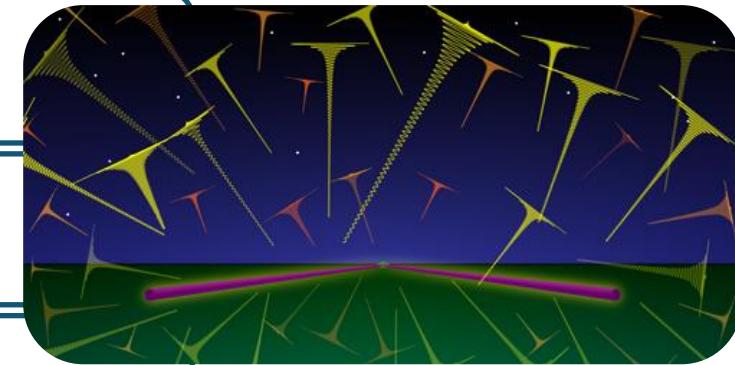
Persistent signals without deterministic models



State of the art: primarily *cross-correlation* between 2+ detectors, already computationally very efficient

[LVK 2021 [PRD104,022005](#)]

Key challenge: controlling correlated noise sources



Not many example applications of ML to this yet

Open problems & future directions:

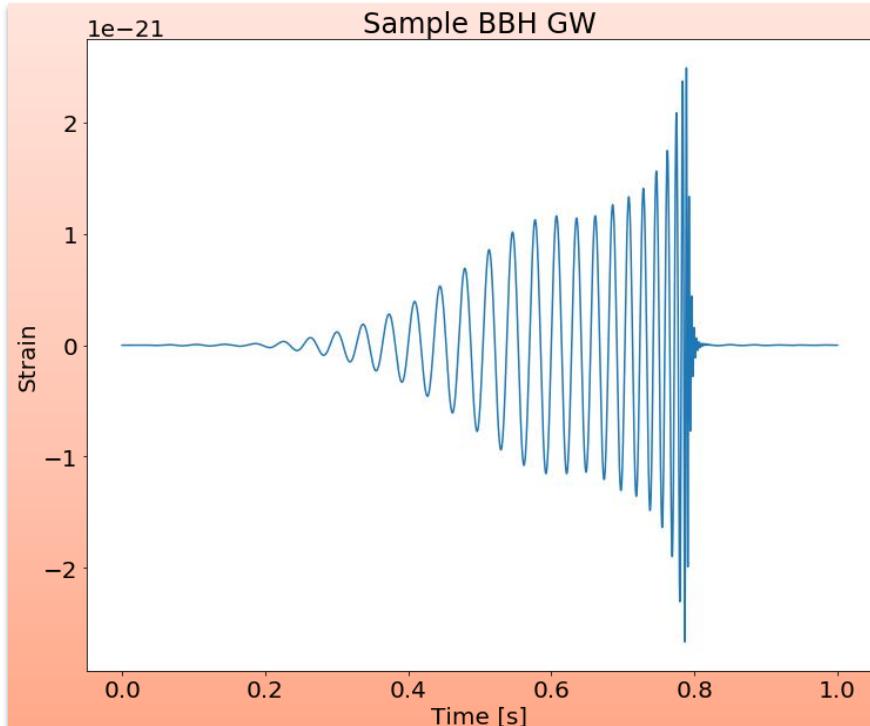
- ML noise mitigation?
- Early-universe physics through simulation-based inference?
- Intermittent, non-Gaussian backgrounds: enabling optimal Bayesian-style search for stochastic background from faint CBC sources? [Smith&Thrane2018 [PRX8,021019](#)]
- Overlap with “burst” and CW-like searches for long-duration transients, with possibly rather complicated waveforms (newborn neutron stars, magnetars, ...)

a review: Remortel+2023
[PPNP128,104003](#)

ALMA MATER STUDIORUM
UNIVERSITÀ DI BOLOGNA

Examples of GW Transient signal ML approaches

CBC



CCSN

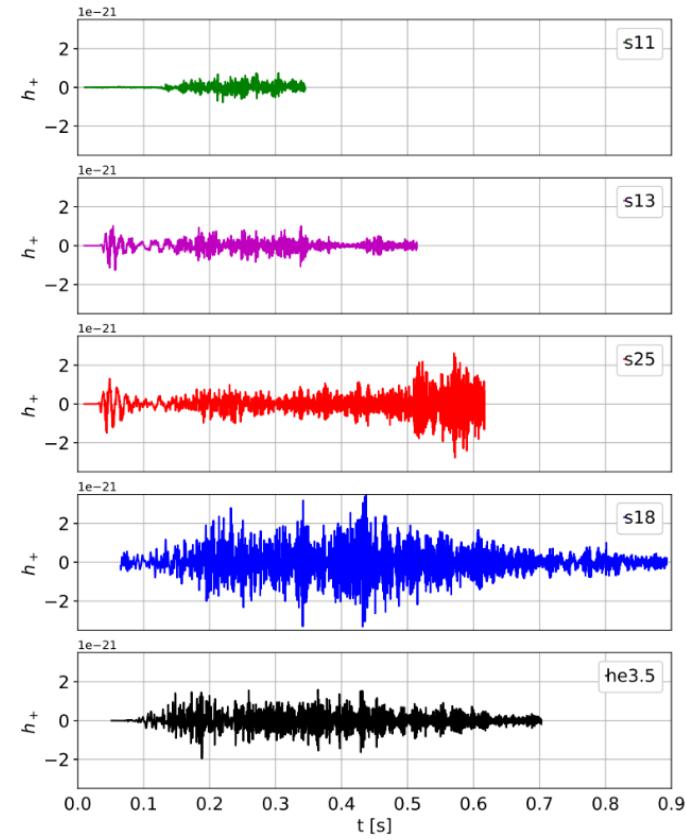
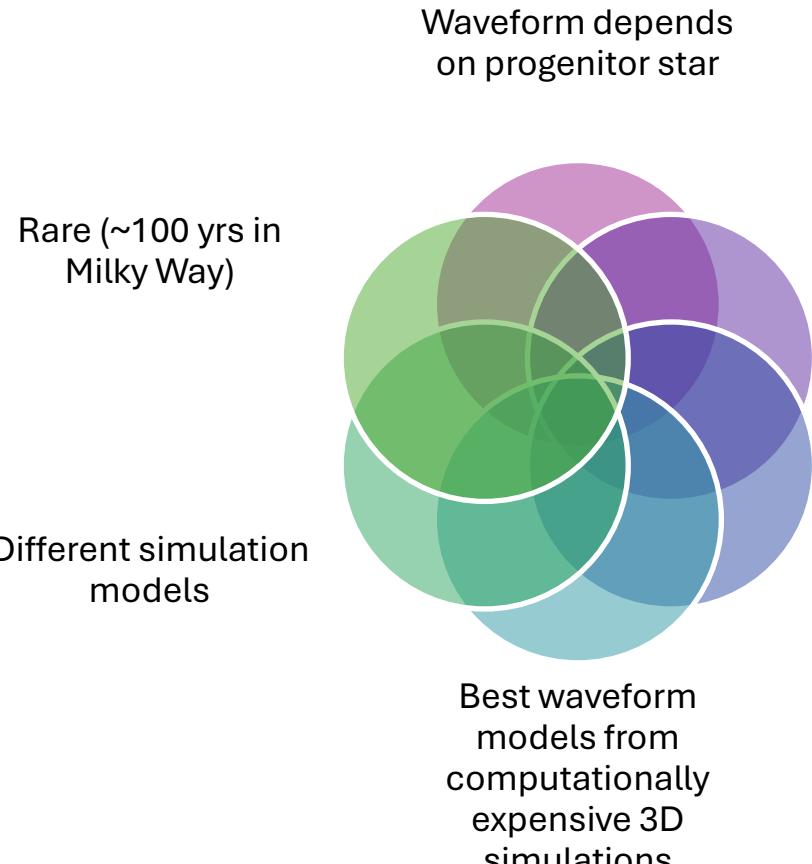
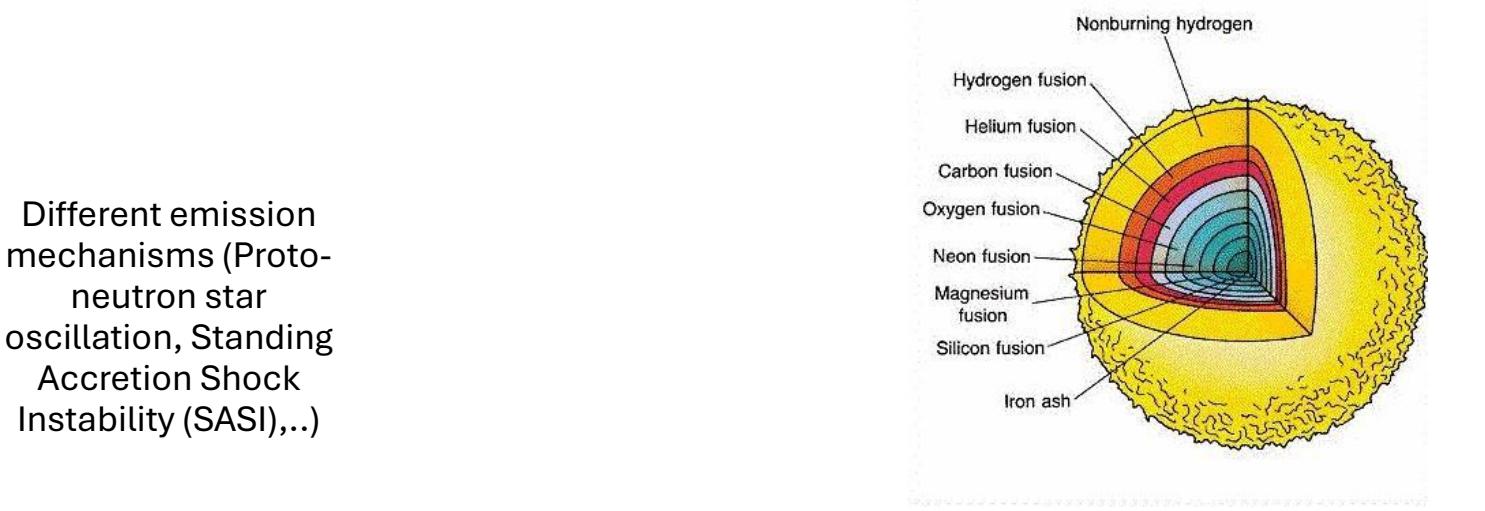


Image from less, Cuoco, Morawski, Powell (2020)

GWs from Core Collapse Supernovae



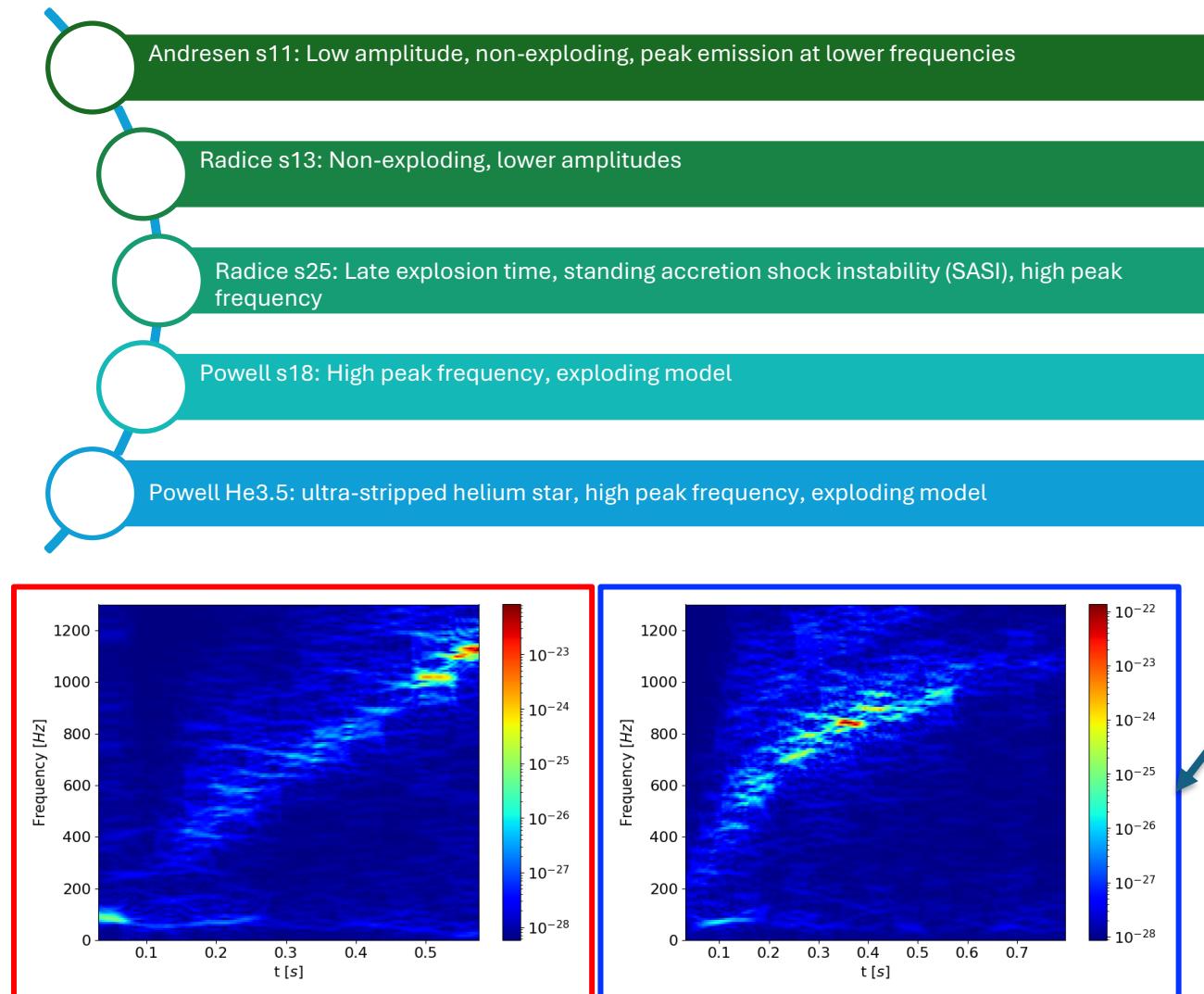
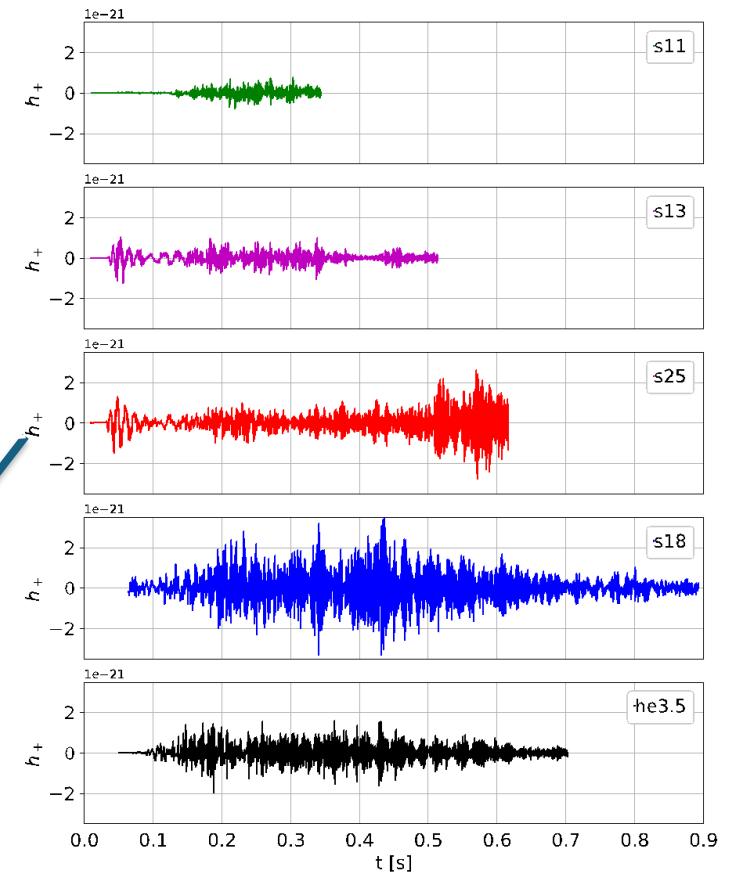
Need an alternative to matched filter approach



Ott et al. (2017)

GW emission Process	Potential explosion mechanism		
	MHD mechanism (rapid rotation)	Neutrino mechanism (slow/no rotation)	Acoustic mechanism (slow/no rotation)
Rotating collapse and Bounce	Strong	None/weak	None/weak
3D rotational instabilities	Strong	None	None
Convection & SASI	None/weak	Weak	Weak
PNS g -modes	None/weak	None/weak	Strong

Core-Collapse Supernovae models



less, Cuoco, Morawski, Powell,
<https://doi.org/10.1088/2632-2153/ab7d31>

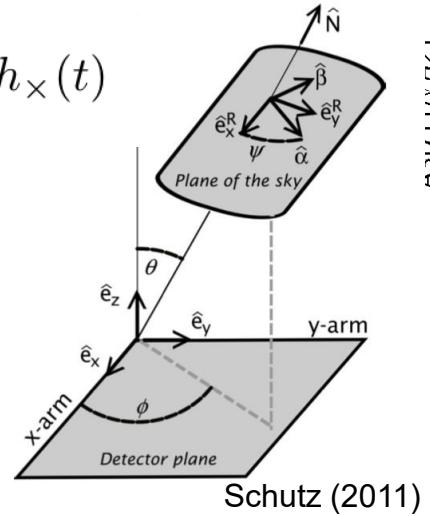
MDC and CCSN GW simulations

Distances:
VO3 0.01 kpc to 10 kpc
ET 0.1 kpc to 1000 kpc

Random sky localization

Large SNR range

$$h(t) = F_+ h_+(t) + F_\times h_\times(t)$$

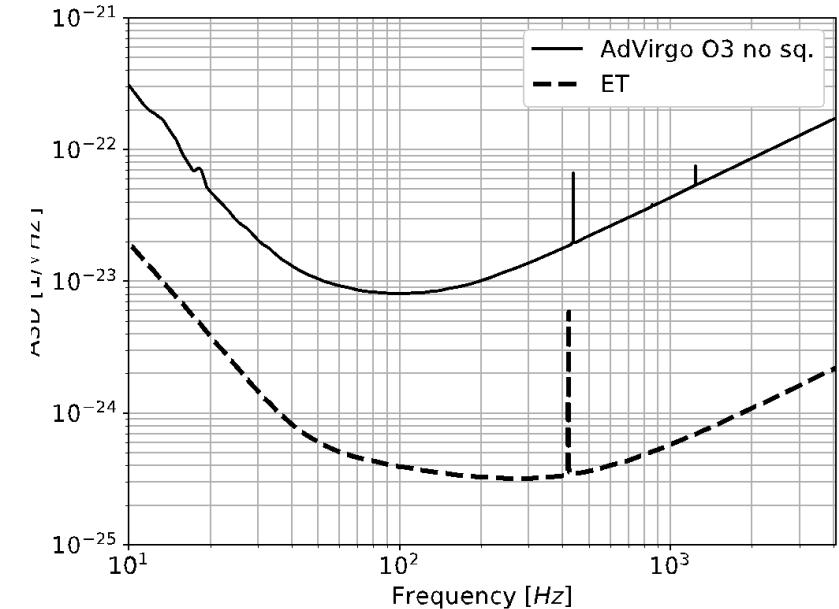
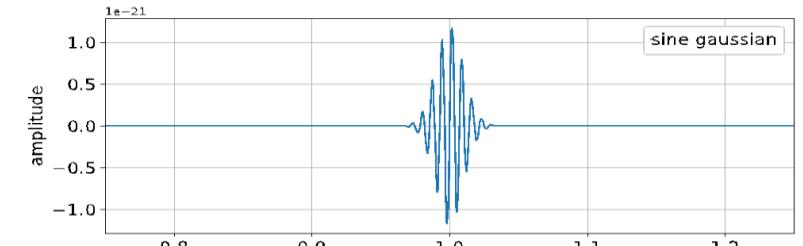
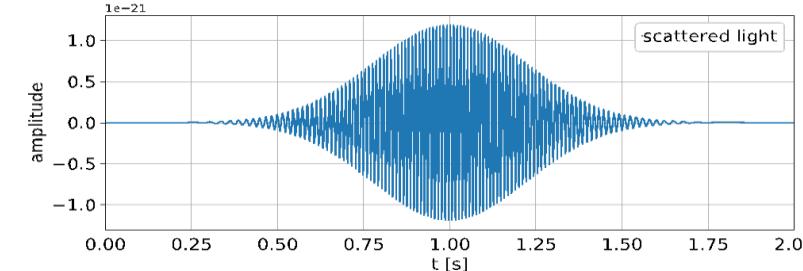


SINE GAUSSIAN & SCATTERED LIGHT GLITCHES

$$h_{SG}(t) = h_0 \sin(2\pi f_0(t - t_0)) e^{-\frac{(t-t_0)^2}{2\tau^2}}$$

$$h_{SL}(t) = h_0 \sin(\phi_{SL}) e^{-\frac{(t-t_0)^2}{2\tau}} \quad \phi_{SL} = 2\pi f_0(t - t_0)[1 - K(t - t_0)^2]$$

BACKGROUND STRAIN: simulated data sampled at 4096 Hz built from VO3 and ET projected sensitivities

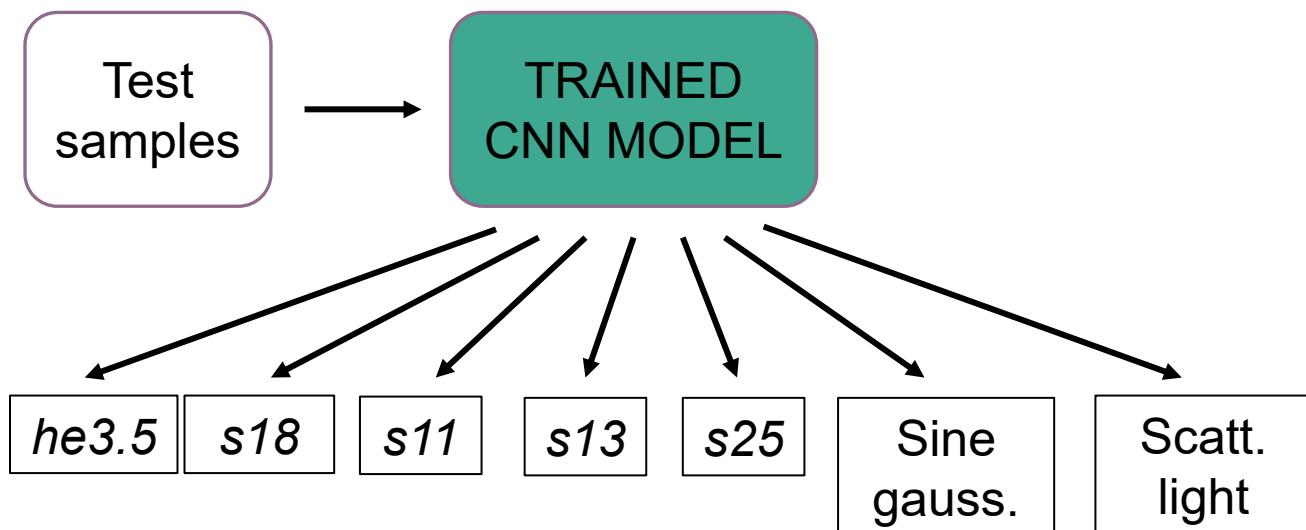


✓ D. 10⁸ ✓

MultiLabel classification

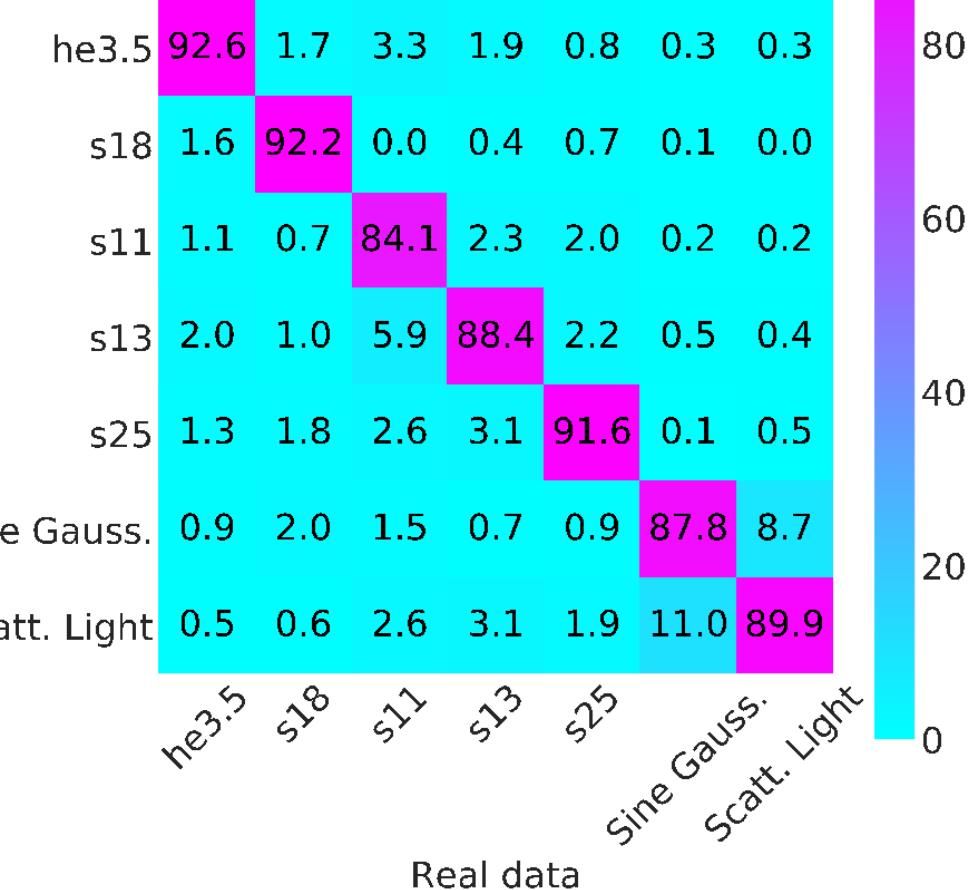
Train on all (4 CCSNe waveform models + glitches).

Test on all.



ET, MERGED 1D & 2D CNN

Total accuracy: 89.6 %



COMPLEX TASK

LONGER TRAINING (> 1 hr)

Test on O2 real Data

44 segments
(4096s per
segment) from
O2 science run.

Fixed distance
of 1 kpc.

Added Three
ITF
classification.

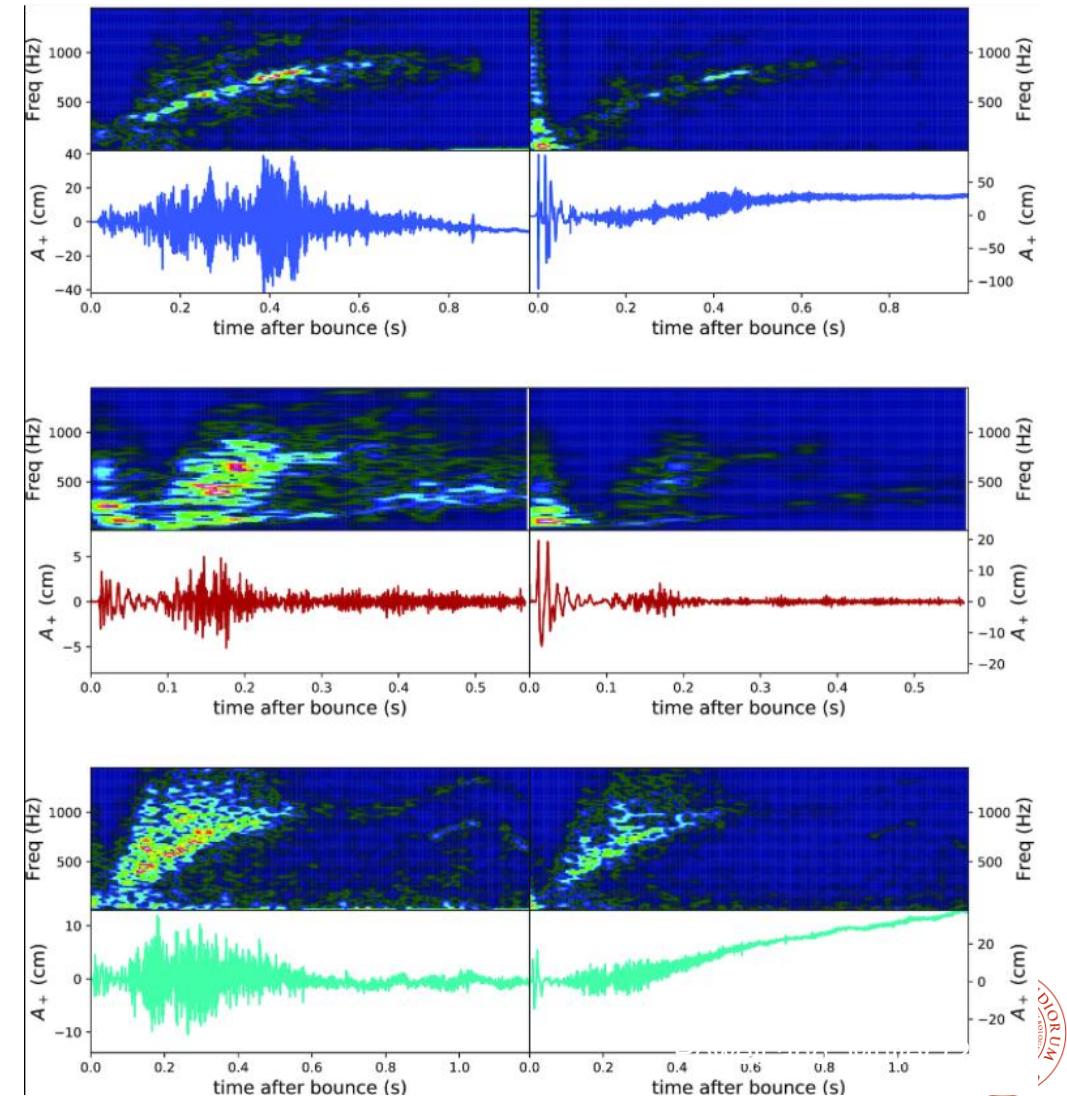
Added m39,
y20, s18np
models
(Powell,
Mueller 2020).

Added LSTM
Networks,
suited for time
series data.

Powell s18np: differs from s18 since simulation does not include perturbations from the convective oxygen shell. As a result, this model develops strong SASI after collapse.

Powell y20: non-rotating, 20 solar mass Wolf-Rayet star with solar metallicity.

Powell m39: rapidly rotating Wolf-Rayet star with an initial helium star mass of 39 solar masses



Real noise from O2 science run

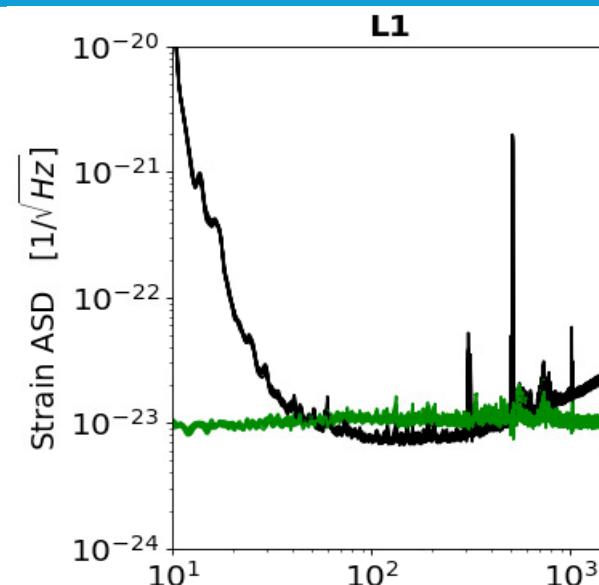
Noise PSD is non stationary.

Multiple Glitch Families.

SNR distribution is affected by ITF antenna pattern.

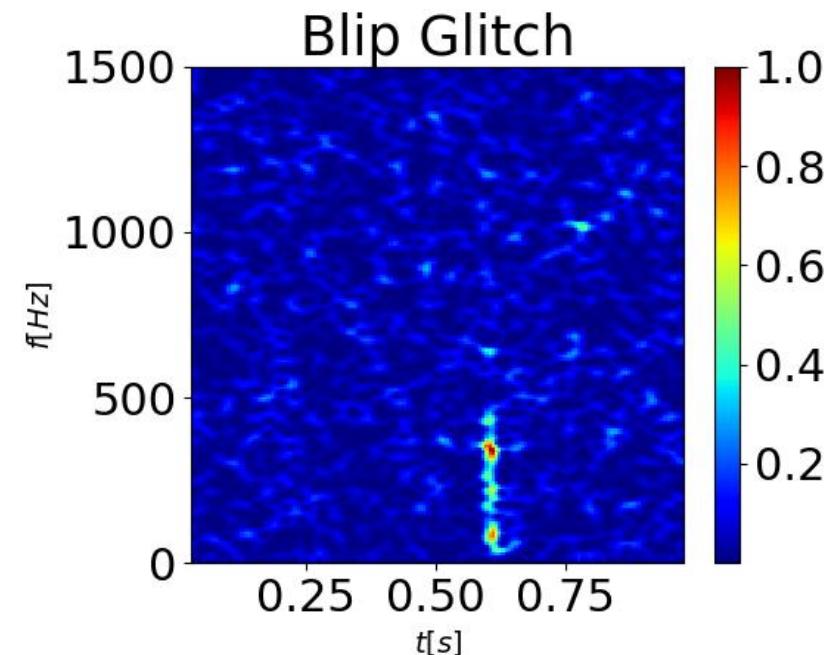
Dataset: ~15000 samples.

Imbalanced Dataset due to different model amplitudes.



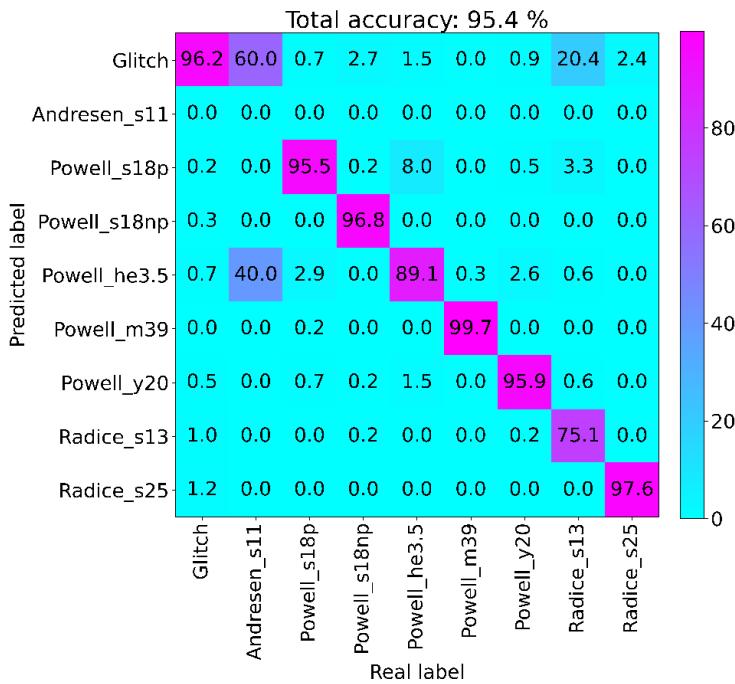
CCSN Classification on Simulated and Real O2 Data with CNNs and LSTMs
A. Iess, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, A&A 669, A42 (2023)

Detector	Triggers		
	Signal	Noise	Total
Virgo V1	9273	47901	57174
Ligo L1	10480	3810	14290
Ligo H1	10984	4103	15087
L1, H1, V1	5647	675	6322

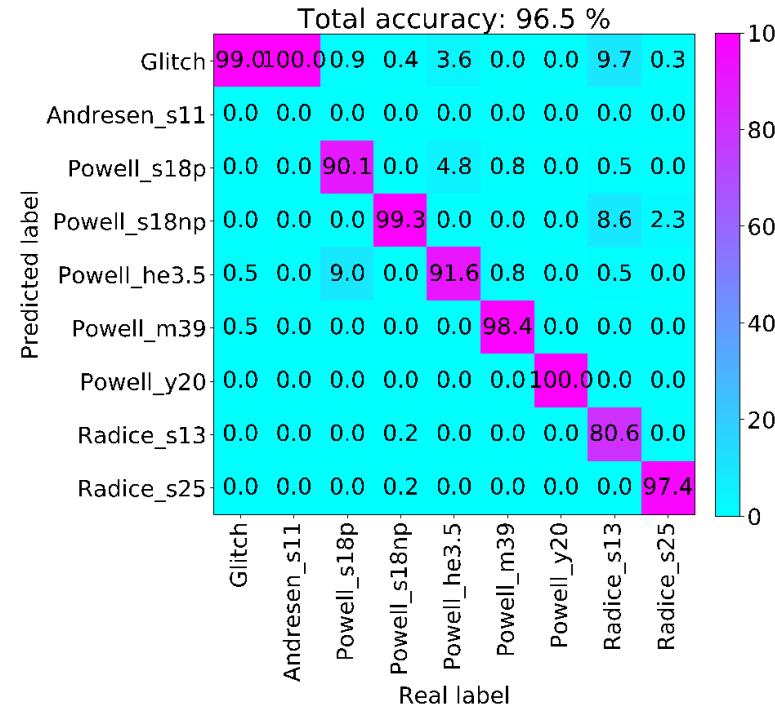


Multi-label task

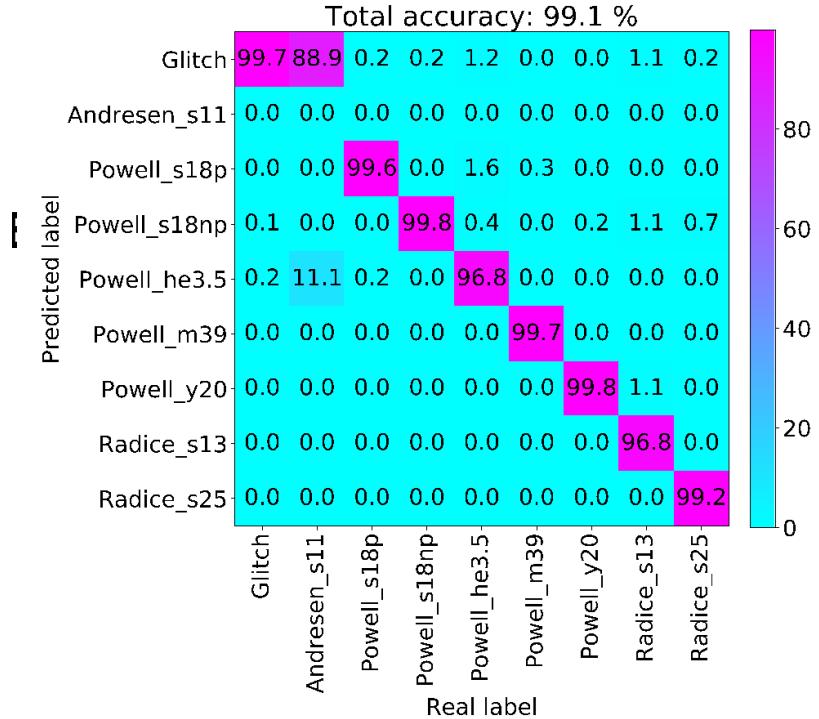
- **Bi-LSTM**, 2 recurrent layers
- ~10 ms/sample
- Best weights over 100 epochs



- **1D-CNN**, 4 convolutional layers
- ~2 ms/sample
- Best weights over 20 epochs



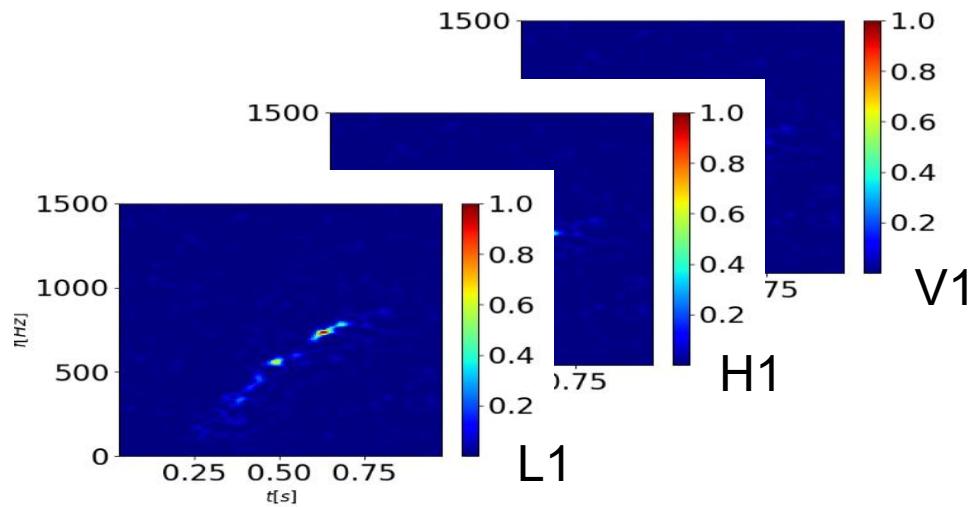
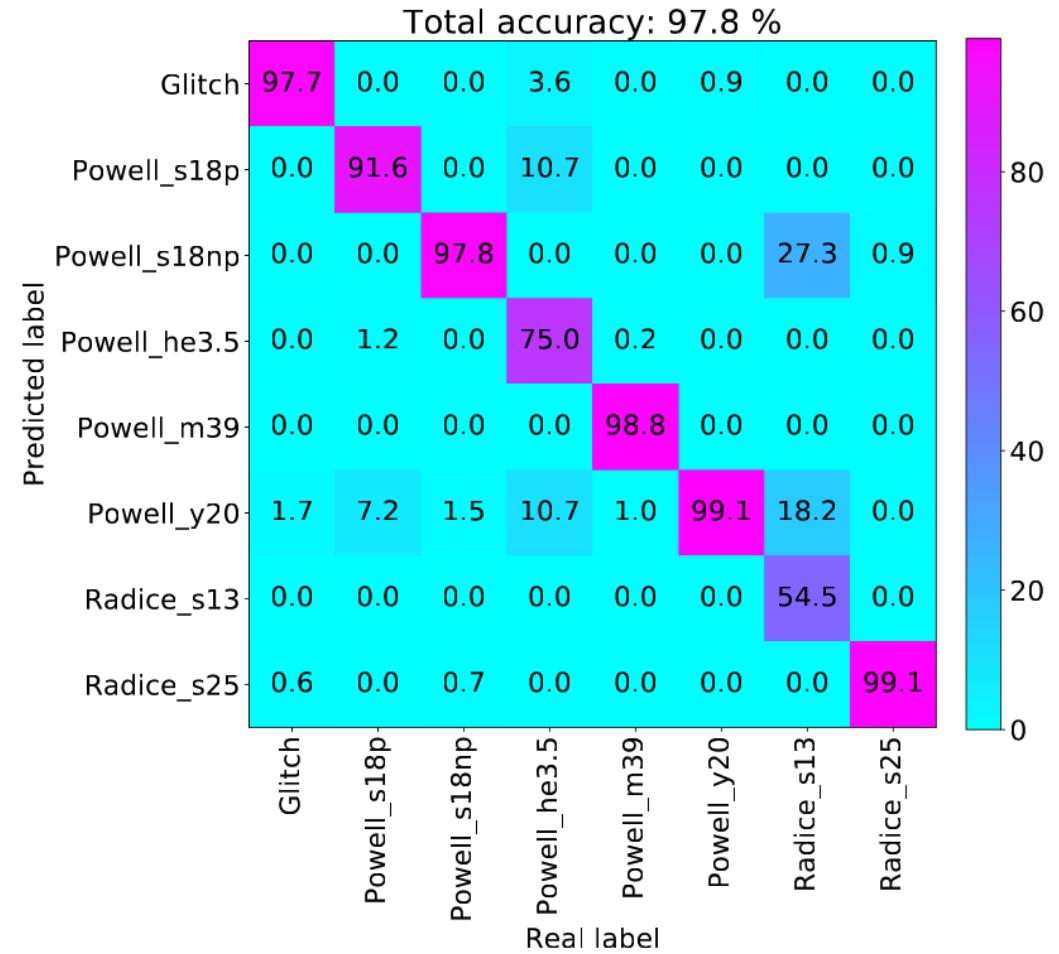
- **2D-CNN**, 4 convolutional layers
- ~3 ms/sample
- Best weights over 20 epochs



Analysis on 3 detectors and merged models on O2 data

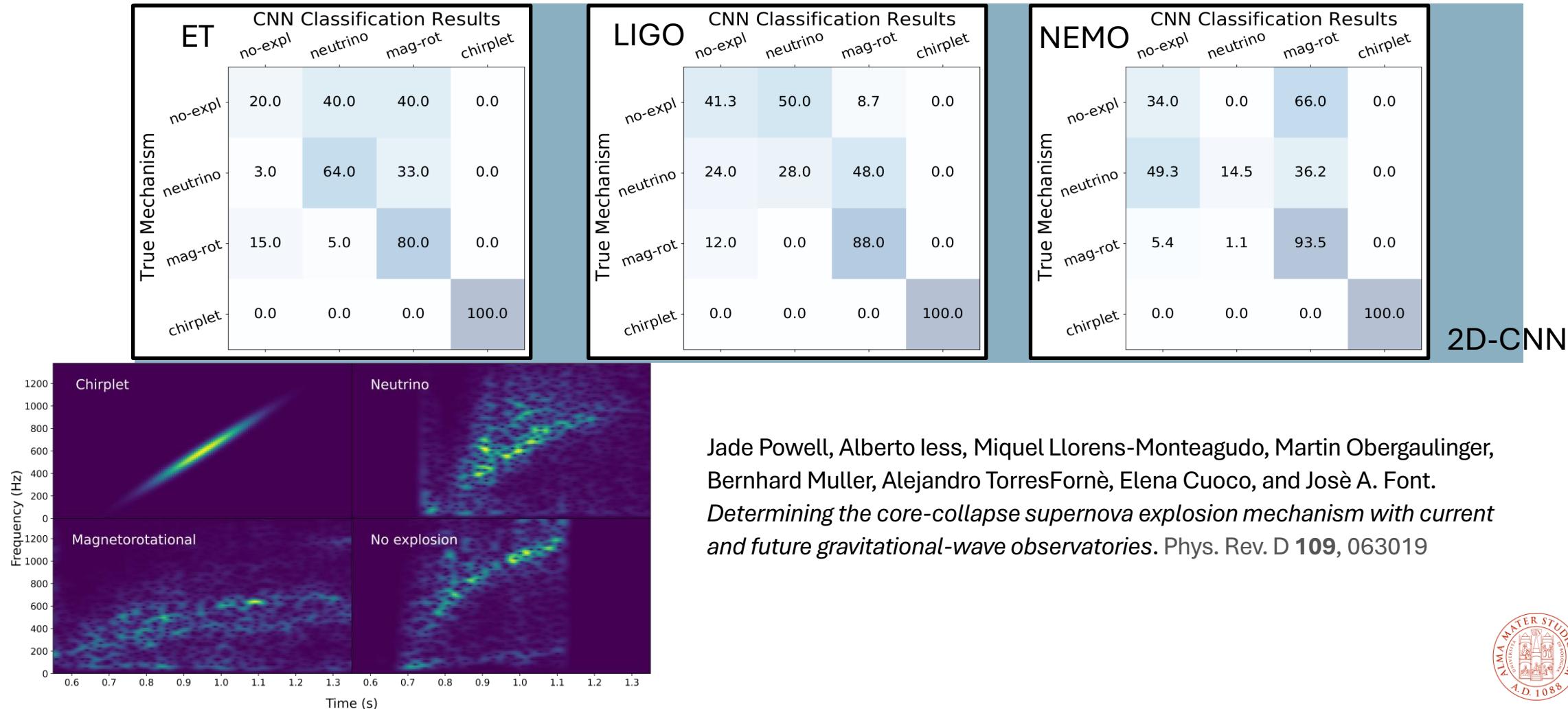
Dataset breakdown: 675 noise, 329 s18p, 491 s18np, 115 he3.5, 1940 m39, 1139 y20, 76 s13, 1557 s25.

Input to NNs have additional dimension (ITF)

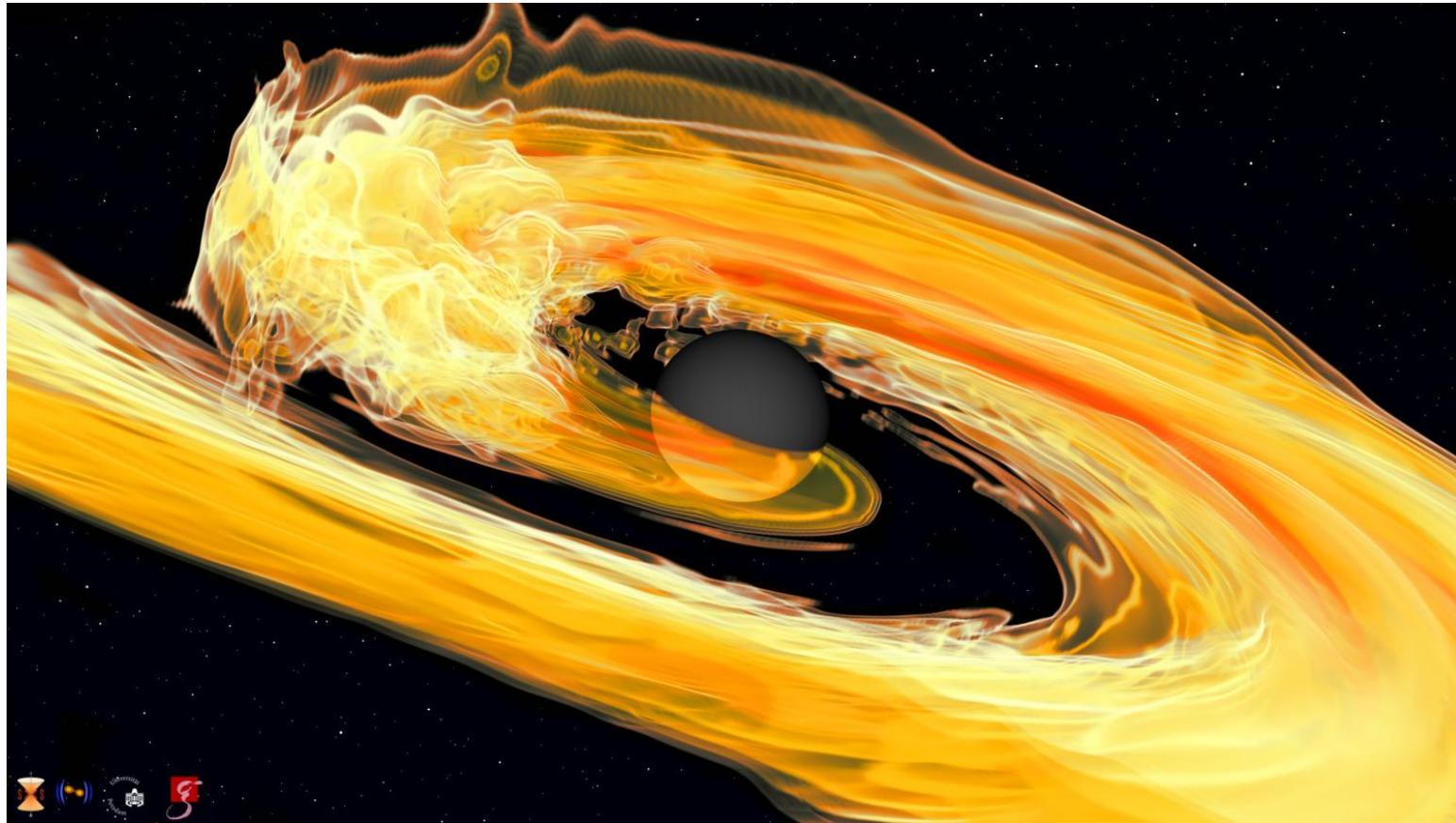


A. Iess, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, A&A 669, A42 (2023)

Determining the core-collapse supernova explosion mechanism



Gravitational wave modelling: template matching



GW detection of binary systems relies on matched-filter analysis. Template accuracy is crucial!

Accurate solutions of the Einstein equations for binary sources can be obtained with Numerical Relativity (NR) simulations.

High computational cost prevent the production of NR waveforms catalogs spanning the full parameter space.

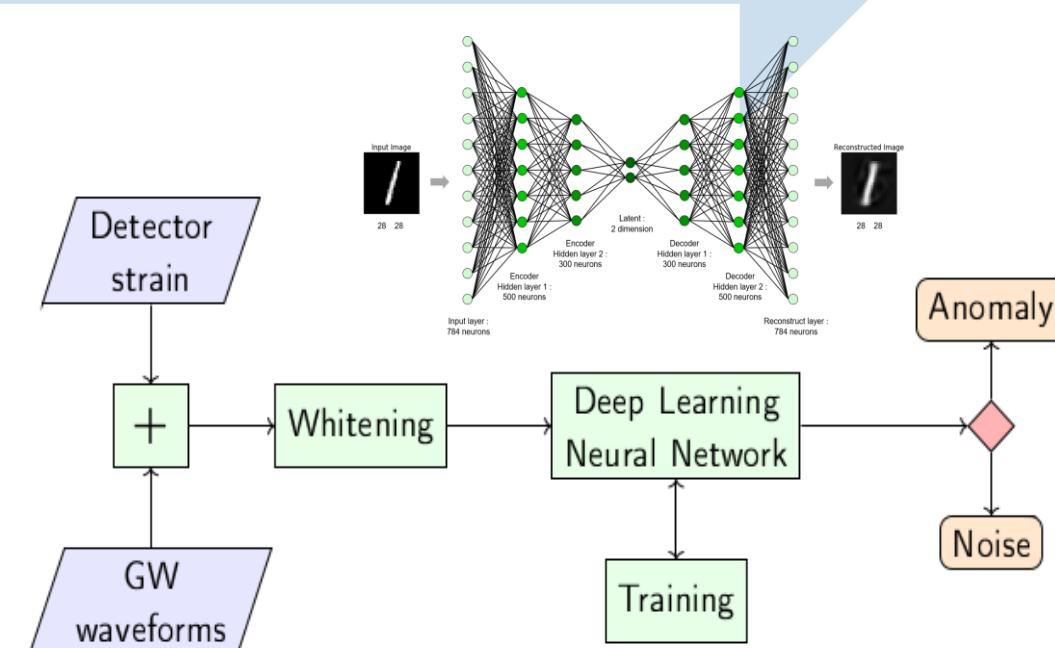
LIGO and Virgo rely on approximate solutions that are traditionally obtained through the effective-one-body or phenomenological modeling approaches.

How can machine learning help?

Example for detection/classification for CBC signals: Anomaly Detection

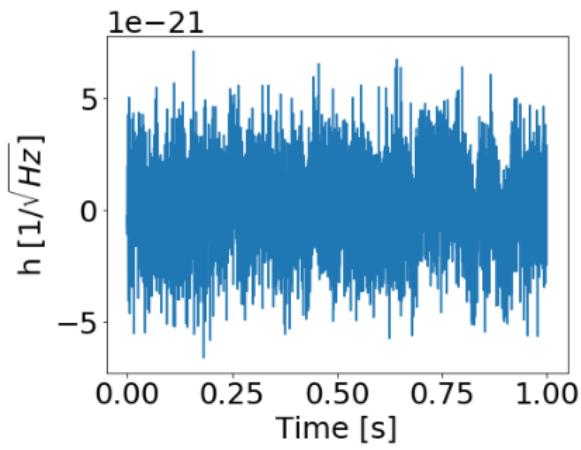
Create a deep learning pipeline allowing detection of anomalies defined in terms of **transient signals**: gravitational waves as well as glitches.

Additionally: Consider **reconstruction of the signal** for the found anomalies.

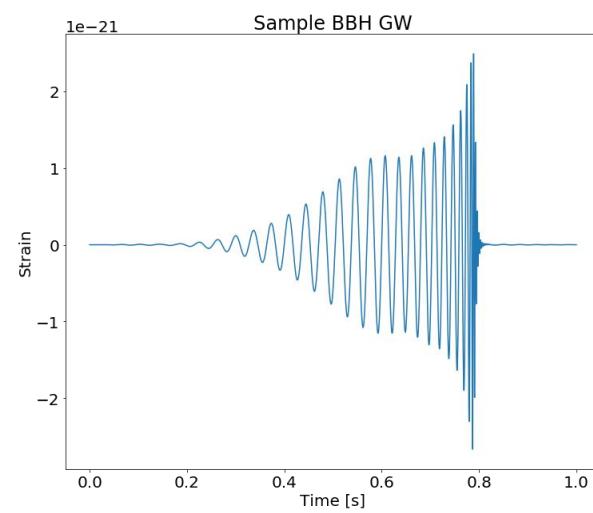
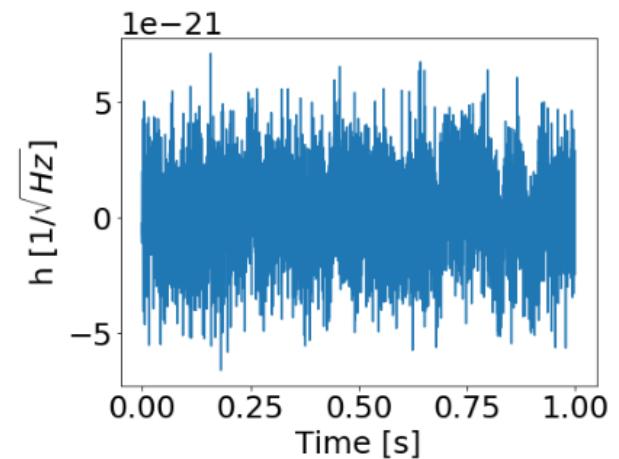


Autoencoder workflow

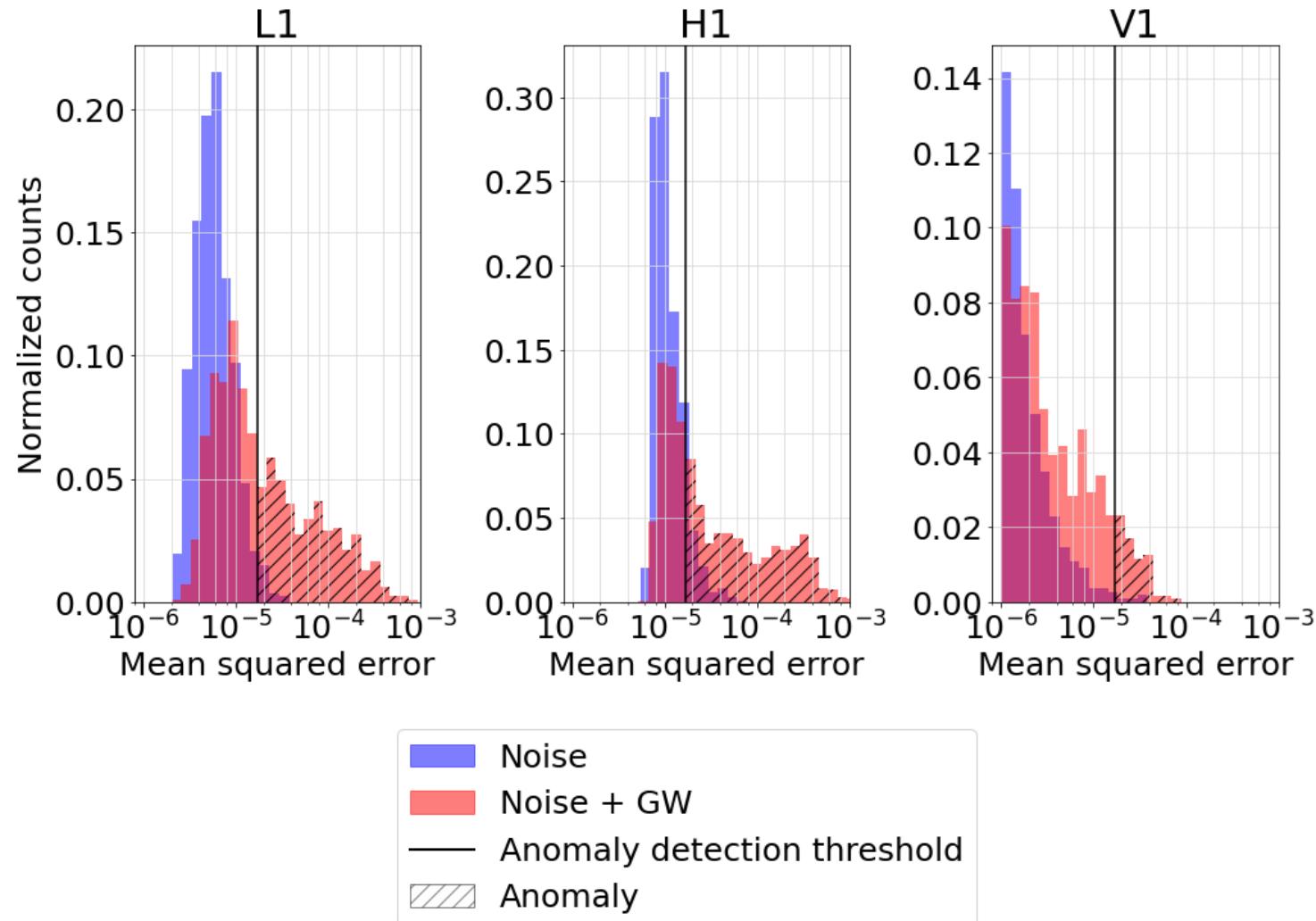
Model
input



Model
prediction

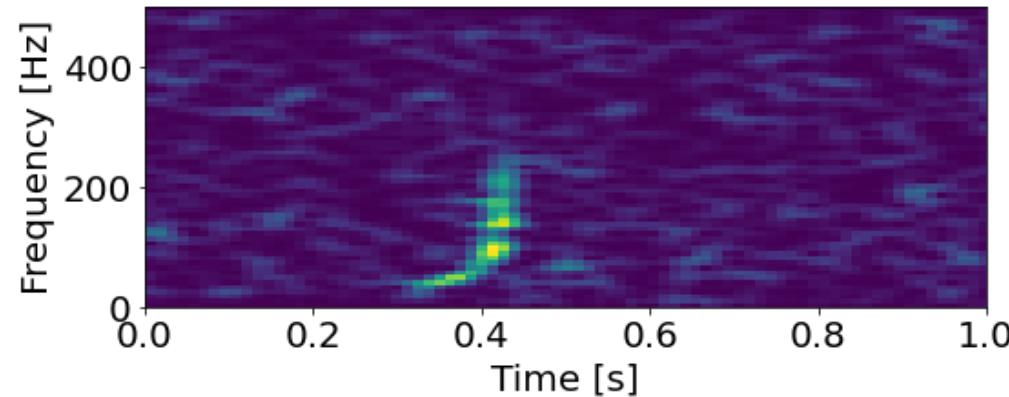
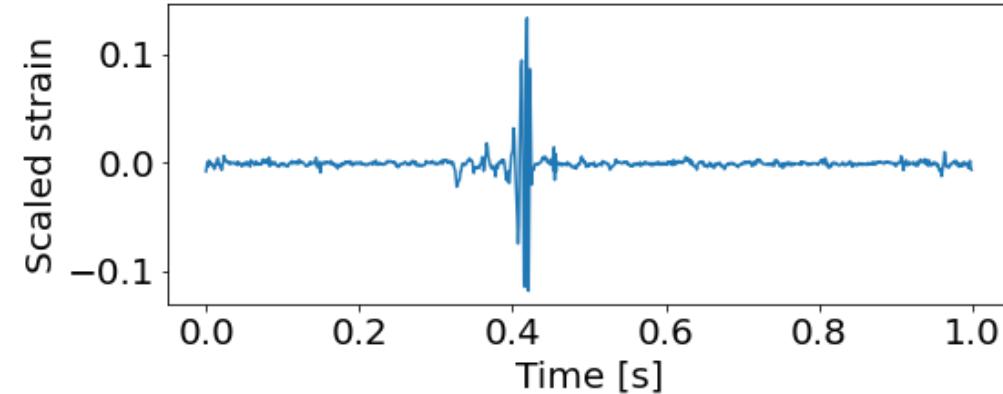


O2 data - MSE Distributions

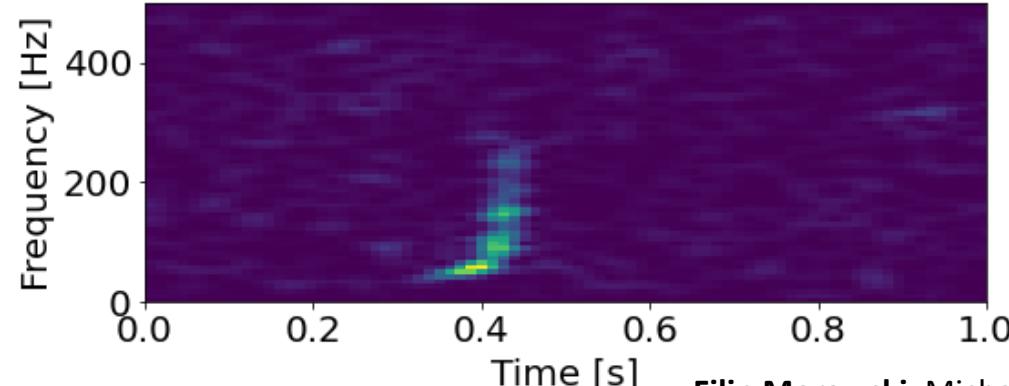


GW150914

LIGO Livingston

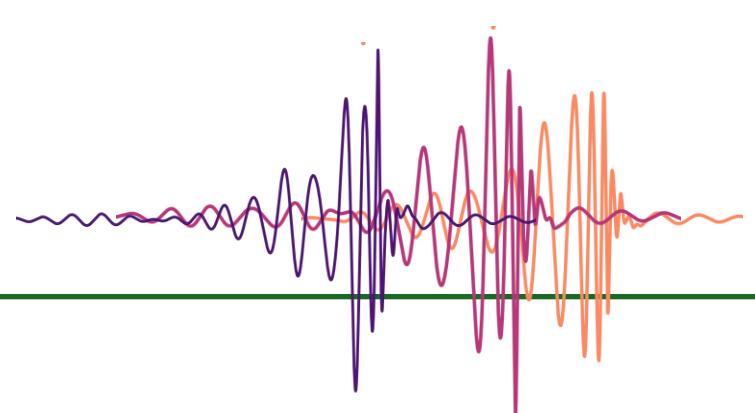
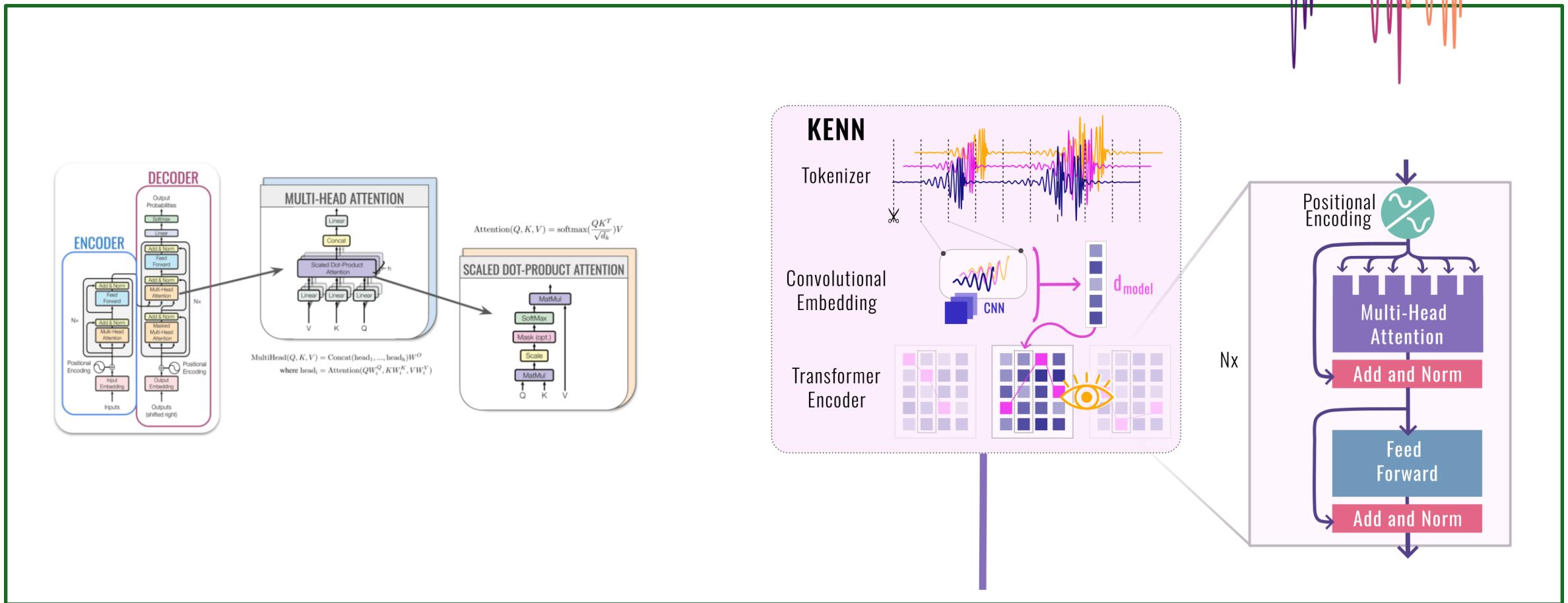


LIGO Hanford



Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre,
<https://iopscience.iop.org/article/10.1088/2632-2153/abf3d0>

Overlapping signals in 3-G detectors: transformer approach

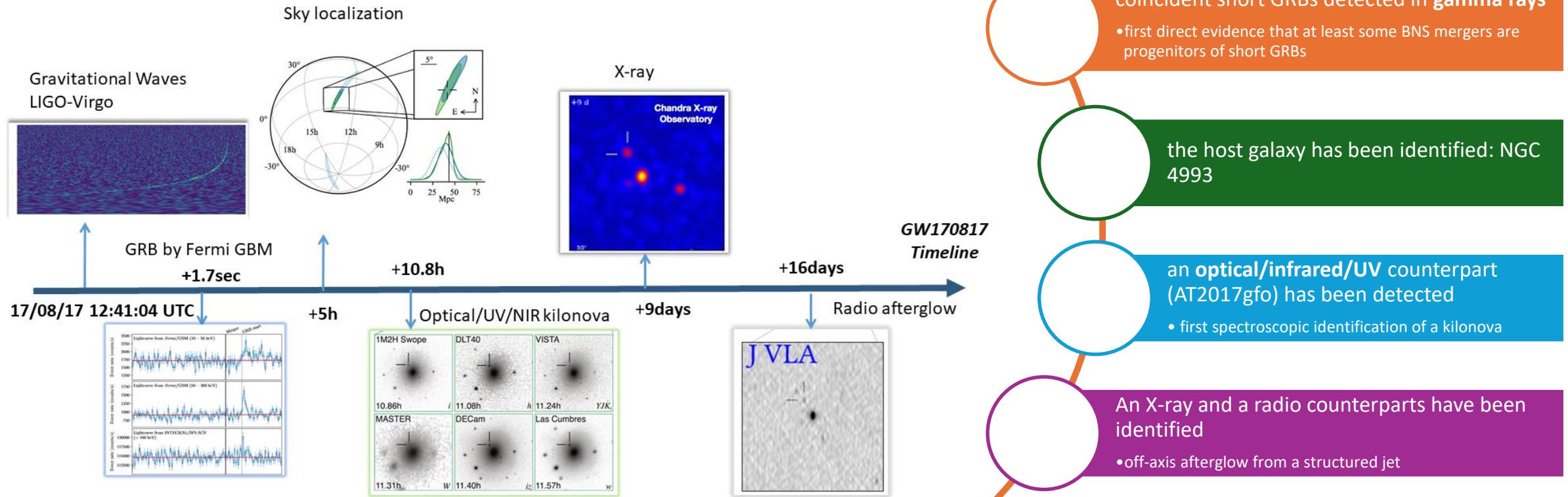


[Lucia Papalini, Federico De Santi, Massimiliano Razzano, Ik Siong Heng, Elena Cuoco, arXiv:2505.02773 Accepted on CQG](https://arxiv.org/abs/2505.02773)

Multimodal Analysis for multi-messenger astrophysics

Cuoco, E., Patricelli, B., less, A. et al. Computational challenges for multimodal astrophysics. *Nat Comput Sci* 2, 479–485 (2022).
<https://doi.org/10.1038/s43588-022-00288-z>

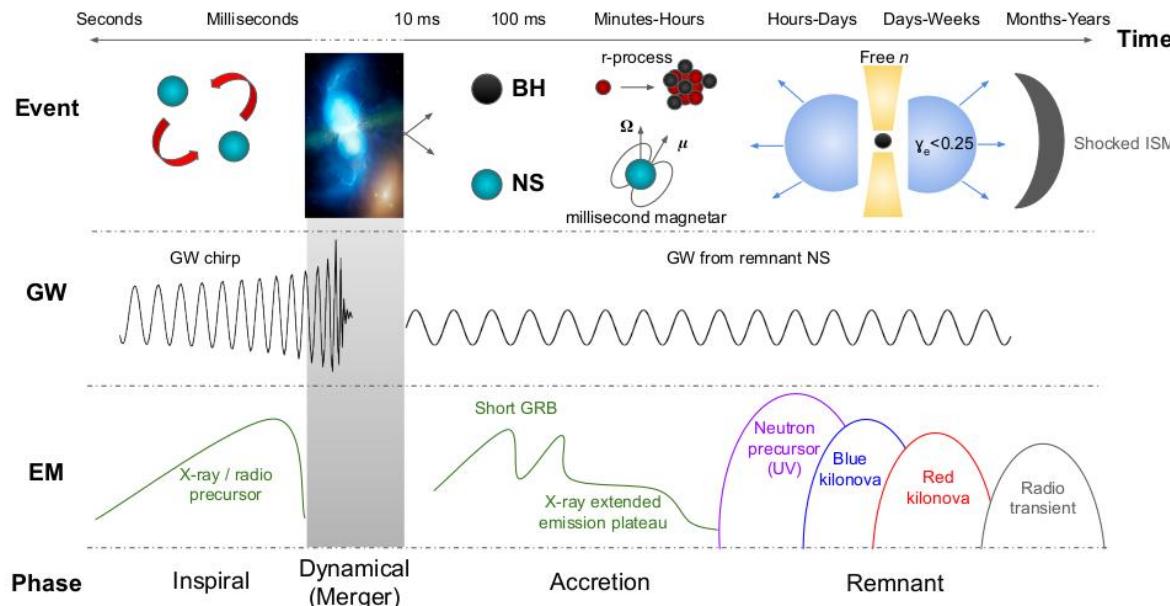
GW170817: the first Multi-messenger GW event



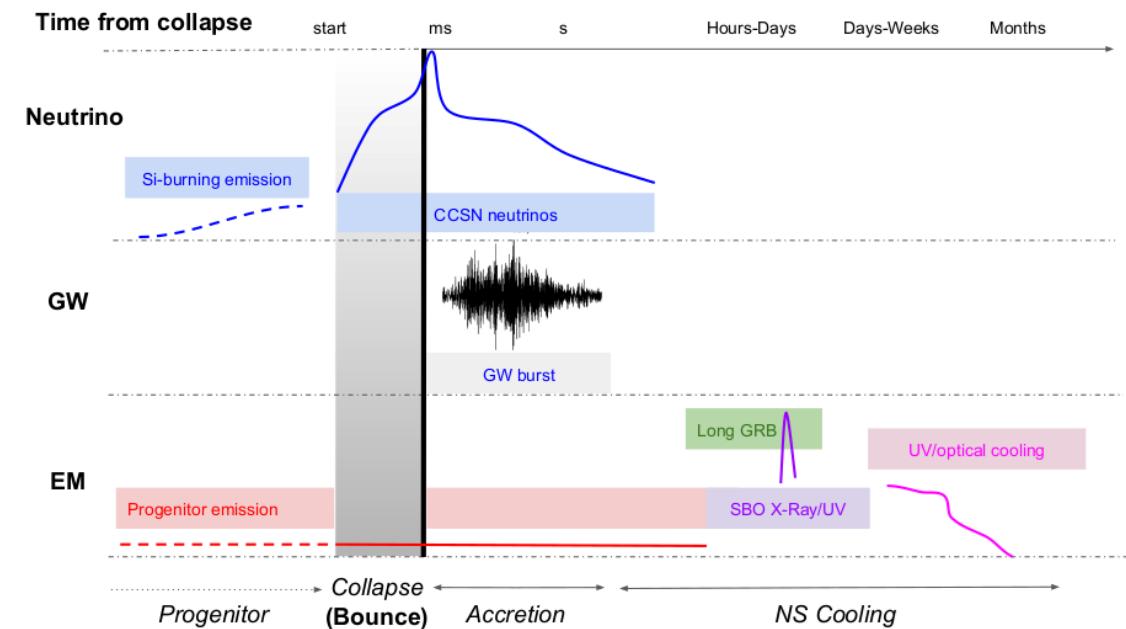
Abbott et al. 2017 and refs. therein

Multi-Messenger Astrophysical signals

CBC events

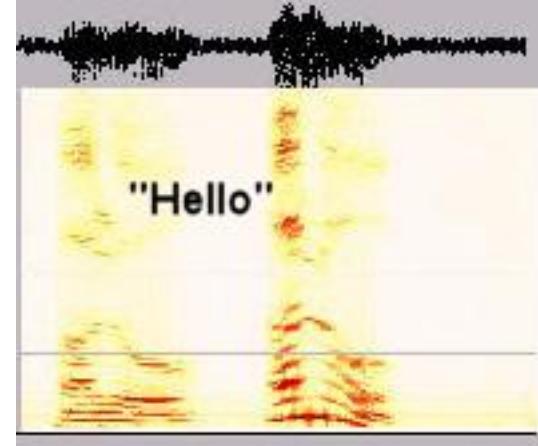


CCSN events



Multimodal inputs

The “world” communicates via different modalities

Visual: Images/videos	Text: Natural language processing	Speech/audio signal
	<p>Multimodal analysis of Gravitational Wave signals and Gamma-Ray Bursts from binary neutron star mergers</p> <p>Elena Cuoco, Barbara Patricelli, Alberto Iess, Filip Morawski</p> <p>A major boost in the understanding of the universe was given by the revelation of the first coalescence event of two neutron stars (GW170817) and the observation of the same event across the entire electromagnetic spectrum. With 3rd Generation gravitational wave detectors and the new astronomical facilities, we expect many multi messenger events of the same type. We anticipate the need to analyse the data provided to us by such events, to fulfill the requirements of real-time analysis, but also in order to decipher the event in its entirety through the information emitted in the different messengers using Machine Learning. We propose a change in the paradigm in the way we will do multi-messenger astronomy, using simultaneously the complete information generated by violent phenomena in the Universe. What we propose is the application of a multimodal machine learning approach to characterize these events.</p>	

How to combine different information?

Multimodal analysis of Gravitational Wave signals and Gamma-Ray Bursts from binary neutron star mergers

Elena Cuoco, Barbara Patricelli, Alberto Iess, Filip Morawski

A major boost in the understanding of the universe was given by the revelation of the first coalescence event of two neutron stars (GW170817) and the observation of the same event across the entire electromagnetic spectrum. With 3rd Generation gravitational wave detectors and the new astronomical facilities, we expect many multi messenger events of the same type. We anticipate the need to analyse the data provided to us by such events, to fulfill the requirements of real-time analysis, but also in order to decipher the event in its entirety through the information emitted in the different messengers using Machine Learning. We propose a change in the paradigm in the way we will do multi-messenger astronomy, using simultaneously the complete information generated by violent phenomena in the Universe. What we propose is the application of a multimodal machine learning approach to characterize these events.

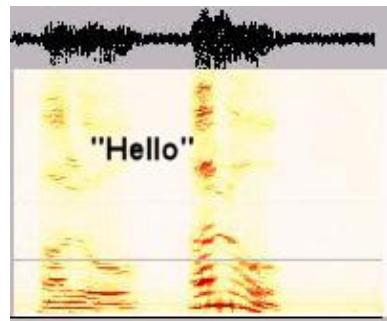


Image captioning, lip reading or video sonorization, sentiment analysis...

Feature extraction

Feature extraction

Feature extraction

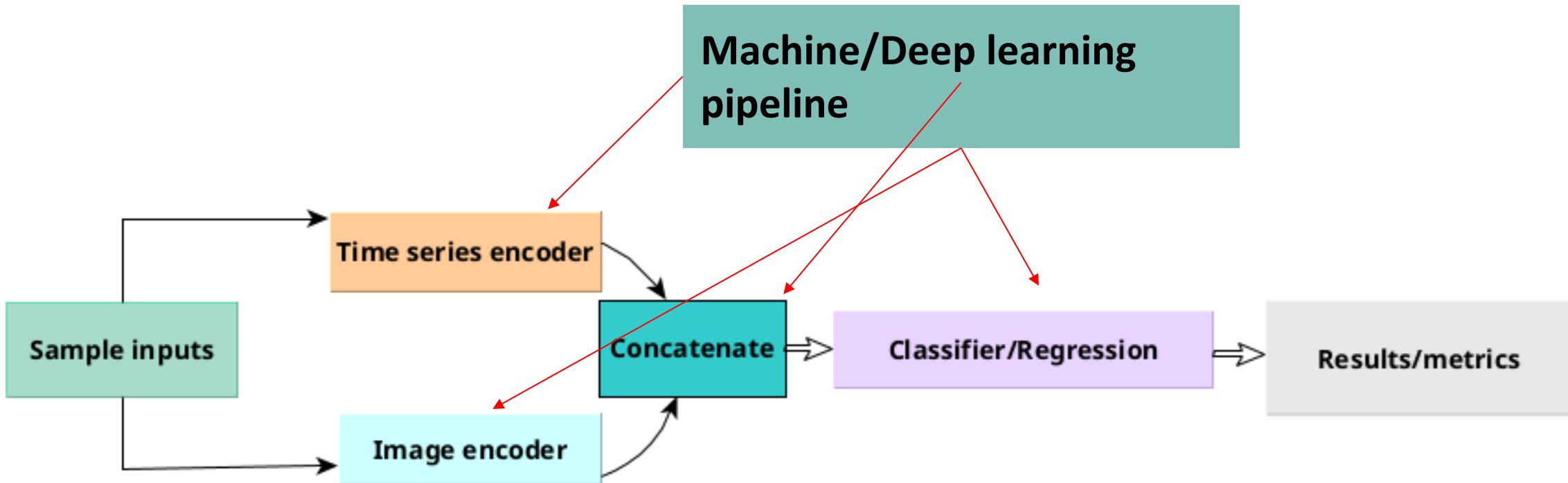
Analysis pipeline

Analysis pipeline

Analysis pipeline

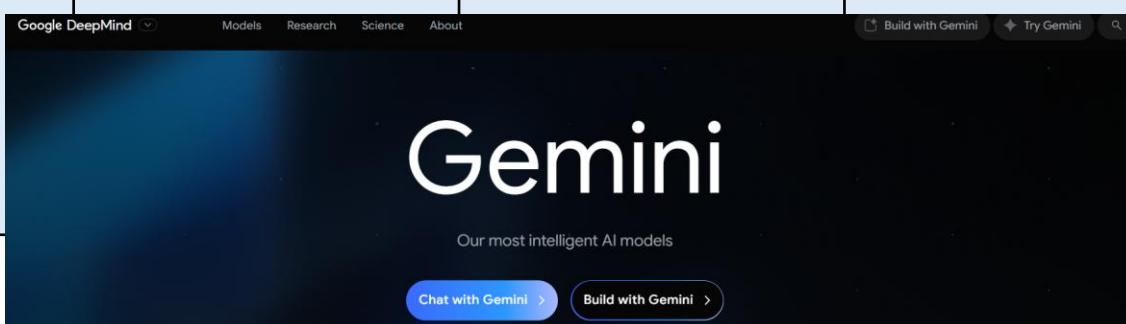
Merge
concatenate

Multimodal Machine Learning (MMML)



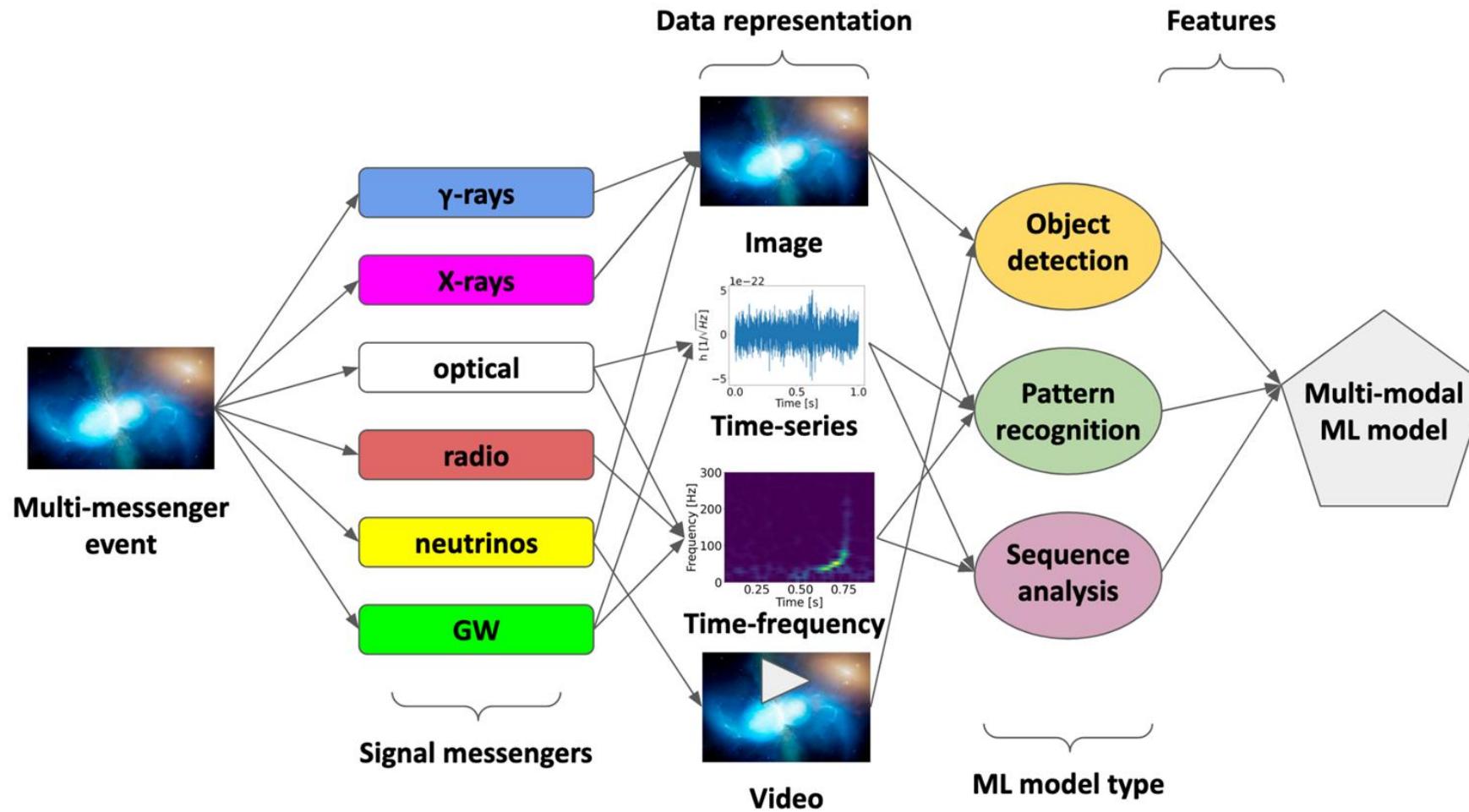
Example of MMML in other fields

Medical applications	Speech recognition	Robotic	Fraudulent behaviours	Genetic	Sentiment analysis
Merge informations from images, symptoms, blood or other analysis,...	Images, videos, captions, labial,..	Spatial information, audio, multi-sensors,...	Biometrics, images, text, speech,...	histopathological diagnosis, cytogenetic,...	Text, images, etc...

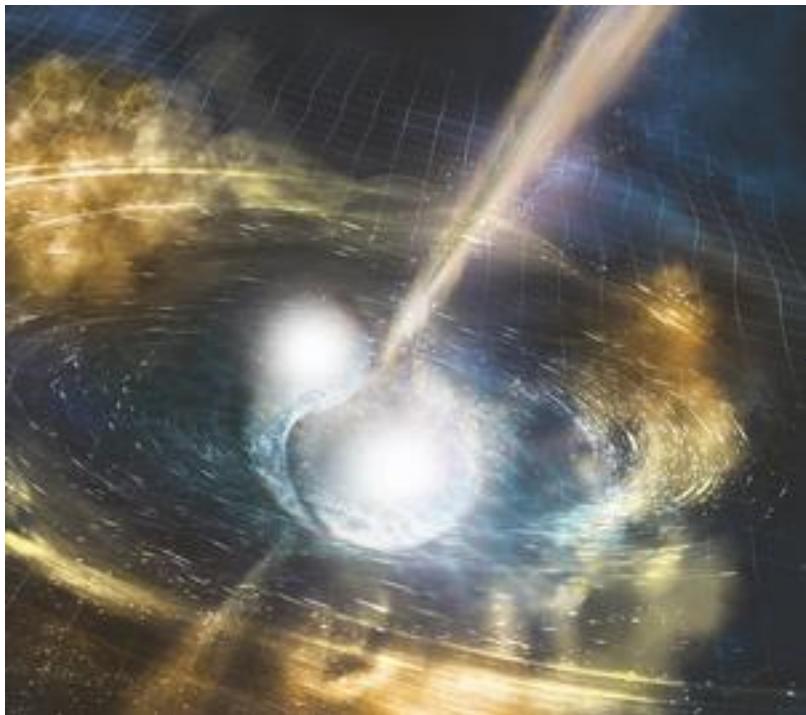
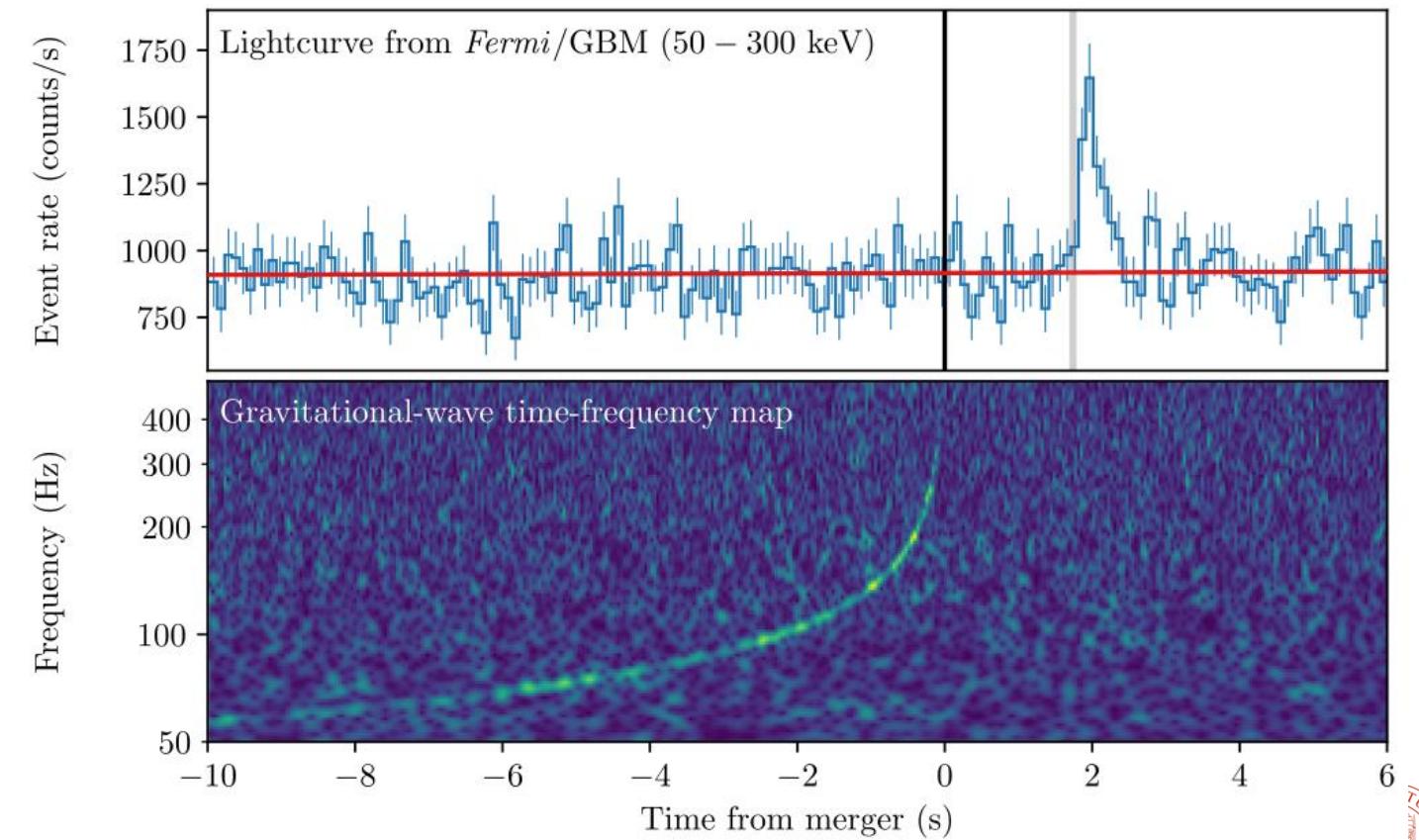


The image is a screenshot of the Gemini AI interface. At the top, there is a dark header with the Google DeepMind logo, a dropdown menu, and navigation links for 'Models', 'Research', 'Science', and 'About'. On the right side of the header are buttons for 'Build with Gemini', 'Try Gemini', and a search icon. The main content area is a large, dark blue rectangle with the word 'Gemini' in a large, white, sans-serif font. Below 'Gemini', in a smaller white font, is the text 'Our most intelligent AI models'. At the bottom of the interface, there are two buttons: 'Chat with Gemini' and 'Build with Gemini'.

MMML for Astrophysics



Case study: Application to GW-GRB signals



Credit: NSF/LIGO/Sonoma State University/A. Simonnet

credits: LIGO/VIRGO collaboration; Abbott et al. 2017, *ApJ*, 848, 13

ALMA MATER STUDIORUM
UNIVERSITÀ DI BOLOGNA

Goal of the project

To estimate the redshift (z) of GRBs associated with BNS mergers

- We have a bunch of simulated GRBs, and we assume that we know z only for a fraction of them;
- We train the pipeline on the GRBs with known z ;
- We predict z using joint GRB and GW analysis

Simulations: what we simulated

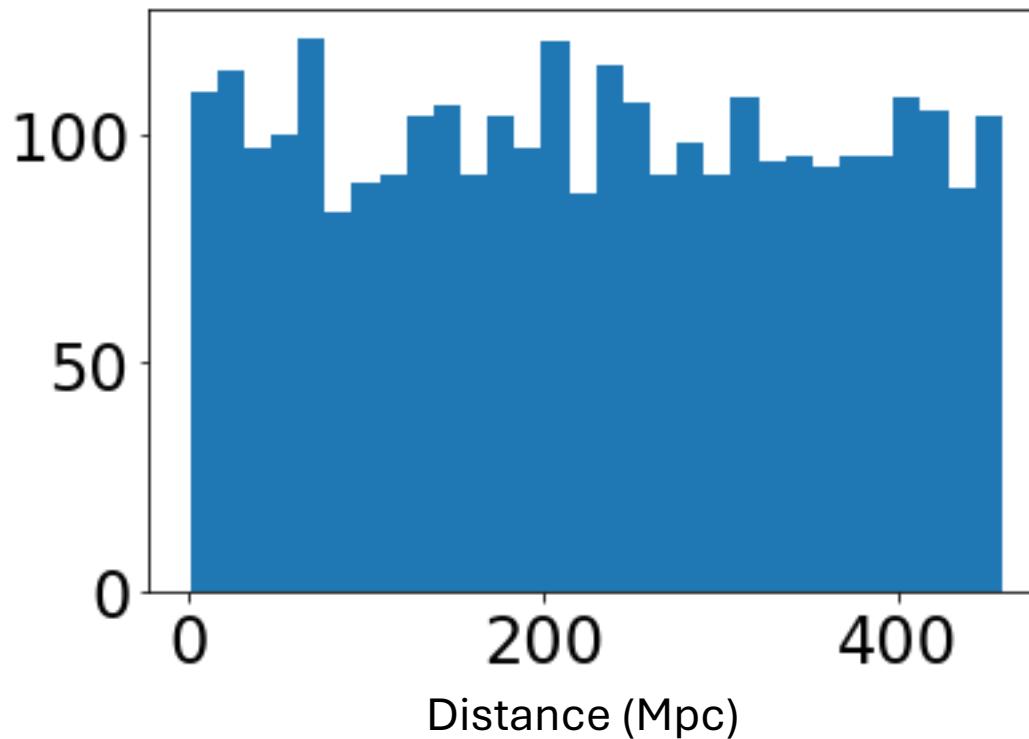
Multi-messenger signals from BNS mergers in 3 steps:

Generation of a population of BNS merging systems

Simulation of the associated GW signals and GW data for a detector such as the Einstein Telescope

Simulation of the associated short GRB light curve as observed by a Fermi-like detector

Binary Neutron Star population



NS spins: aligned; maximum value: 0.05

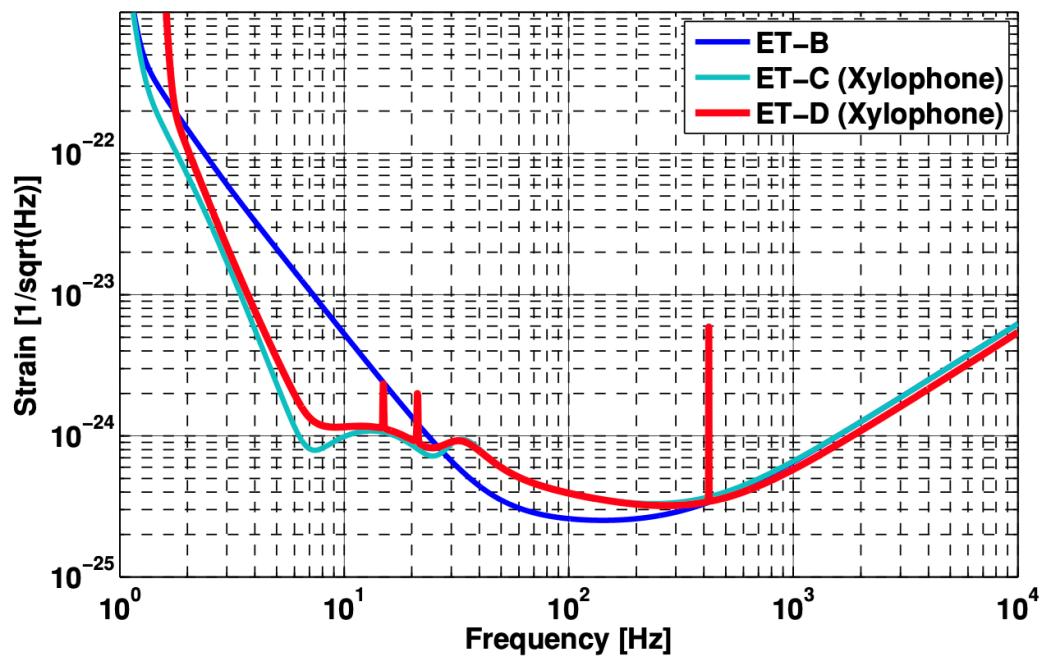
Focus on sources giving rise to an on-axis GRB \rightarrow maximum inclination of the BNS system fixed to 8 deg NS masses: uniform distribution between 1 and $2.5 M_{\odot}$

BNS Distance: uniform distribution between 1 and 500 Mpc

<https://doi.org/10.3390/universe7110394>

ALMA MATER STUDIORUM
UNIVERSITÀ DI BOLOGNA

GW detector noise: Einstein Telescope



Hild et al. 2011, Class. Quantum Grav., 28
094013

<https://doi.org/10.3390/universe7110394>

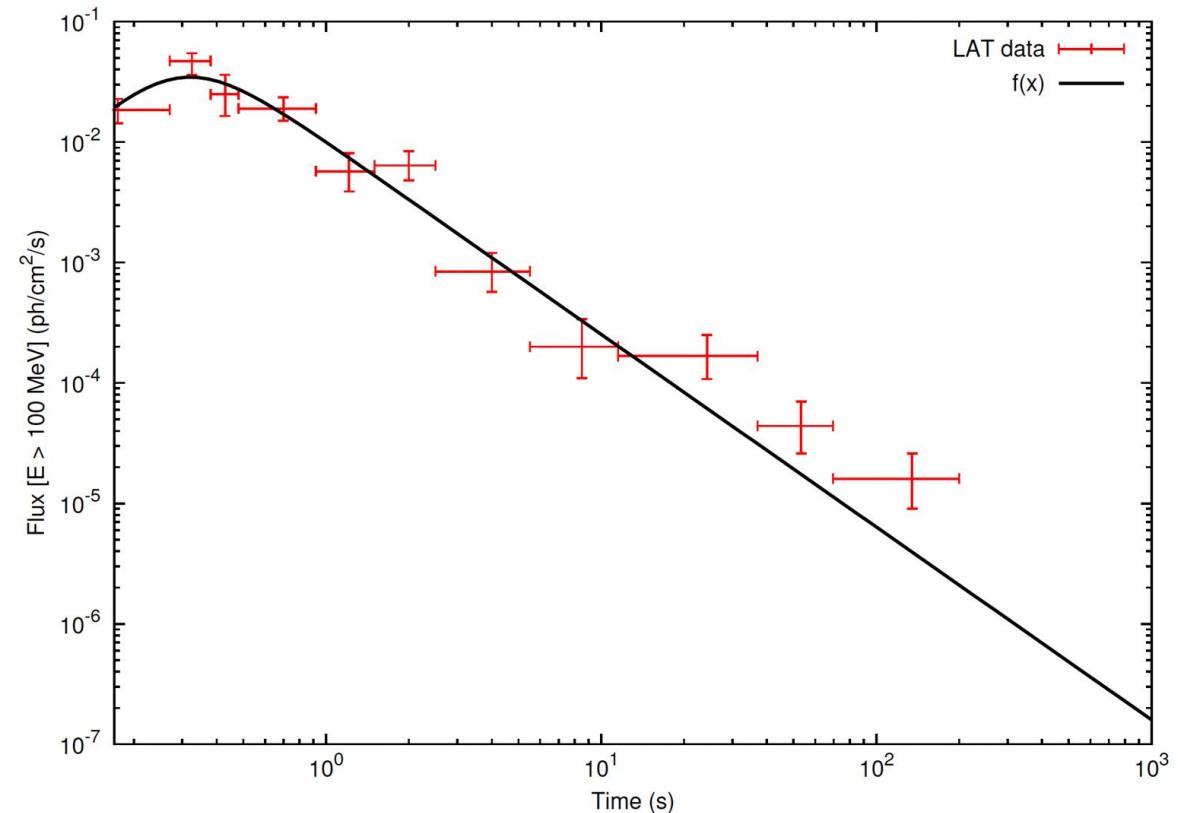
Electromagnetic simulations

We assume that all BNS mergers are associated with a short GRB

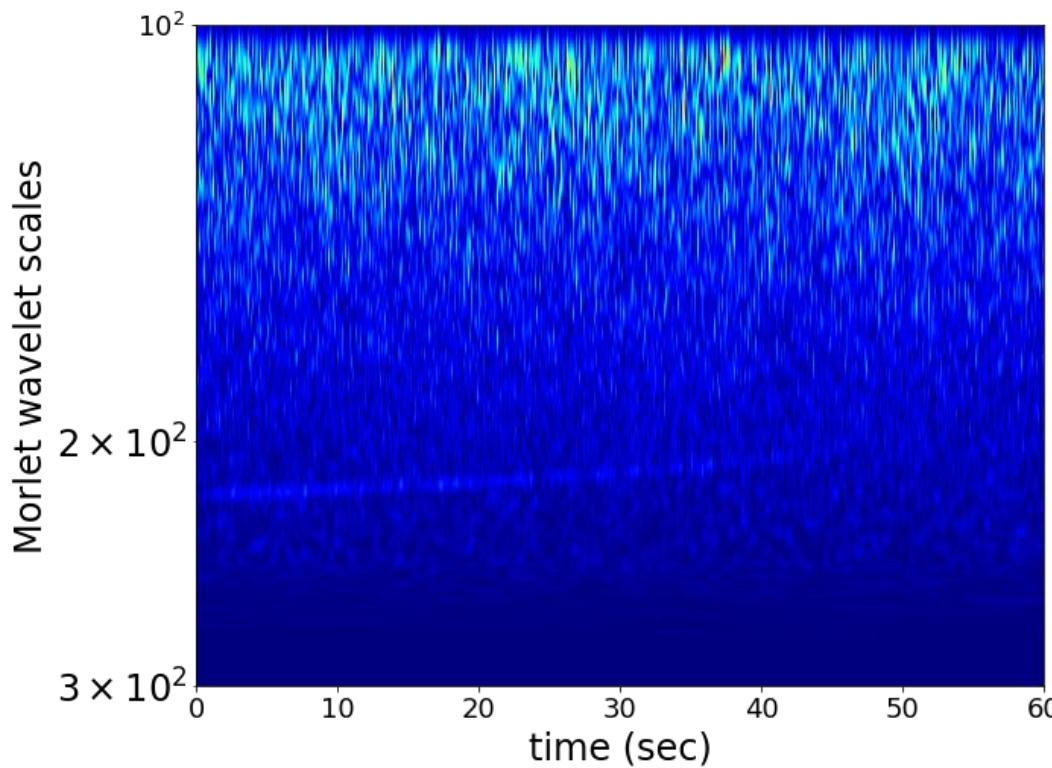
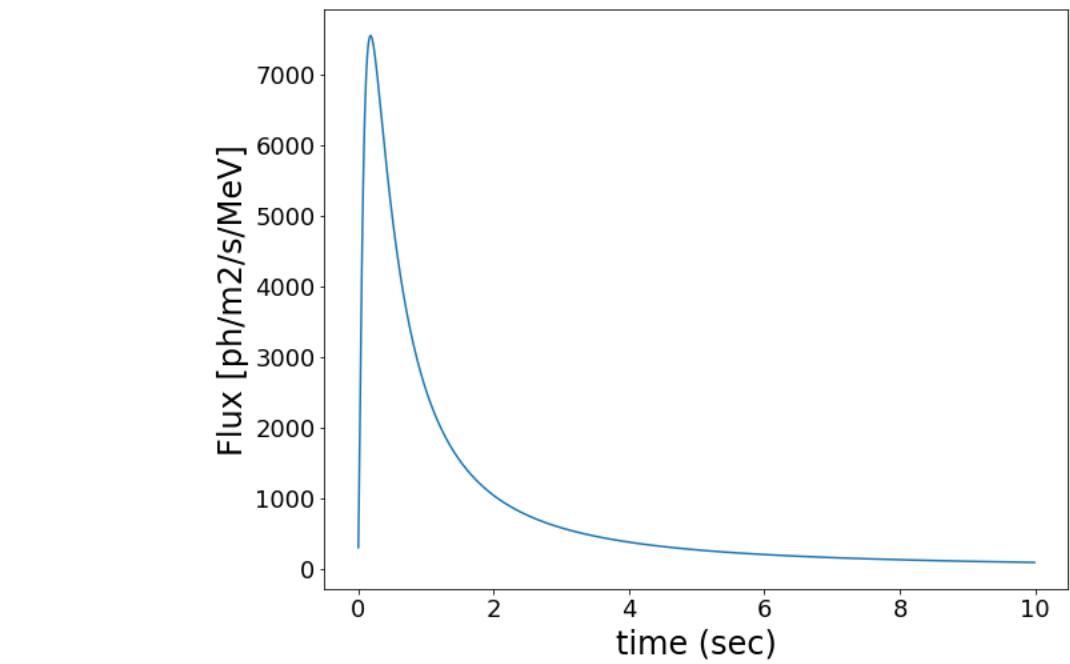
We simulate the **GRB afterglow gamma-ray light curves** following the approach in Patricelli et al. 2016:

GRB 090510 as a prototype

light curve corrected to take into account
• The distance of the sources with respect to GRB 090510
• A range of possible GRB isotropic energies



Data transformation: Time-series or images



Sampling frequency: 2048 Hz
Number of BNS-GRB events: 3000
Train/Validation/Test set: 70%, 10%, 20%

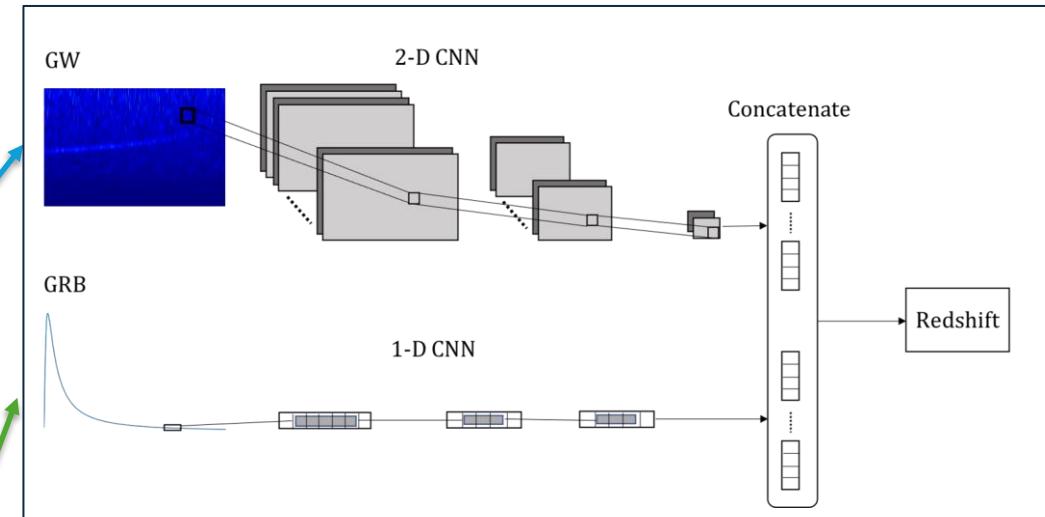
The deep network

2-D CNN for GW time-frequency:

- 5 convolutional layers with (3,3) kernels and 64, 32, 16, 16, 32 filters.
- Max pooling (2,2) after convolutional layer

1-D CNN for GRB light curve:

- 3 convolutional layers with kernels 5, 3, 3 and 80, 40, 40 filters
- Max pooling of 2 after convolutional layer

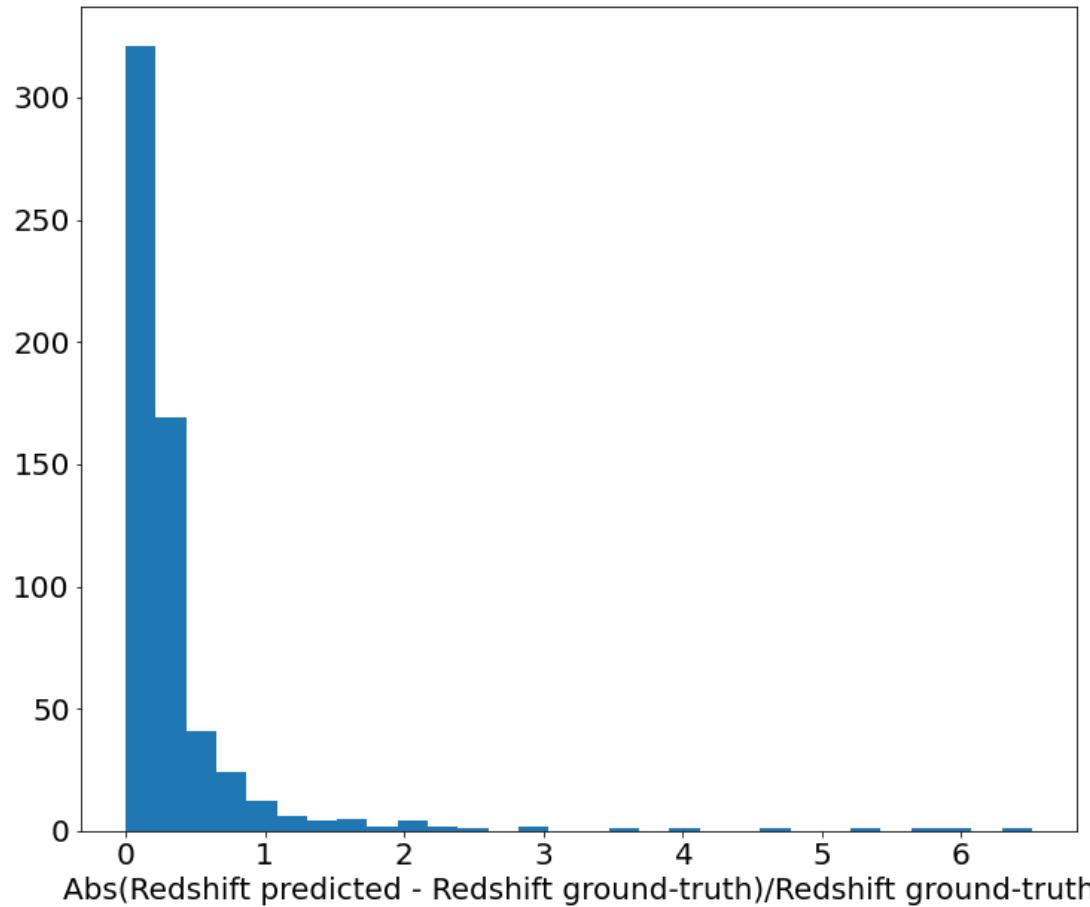
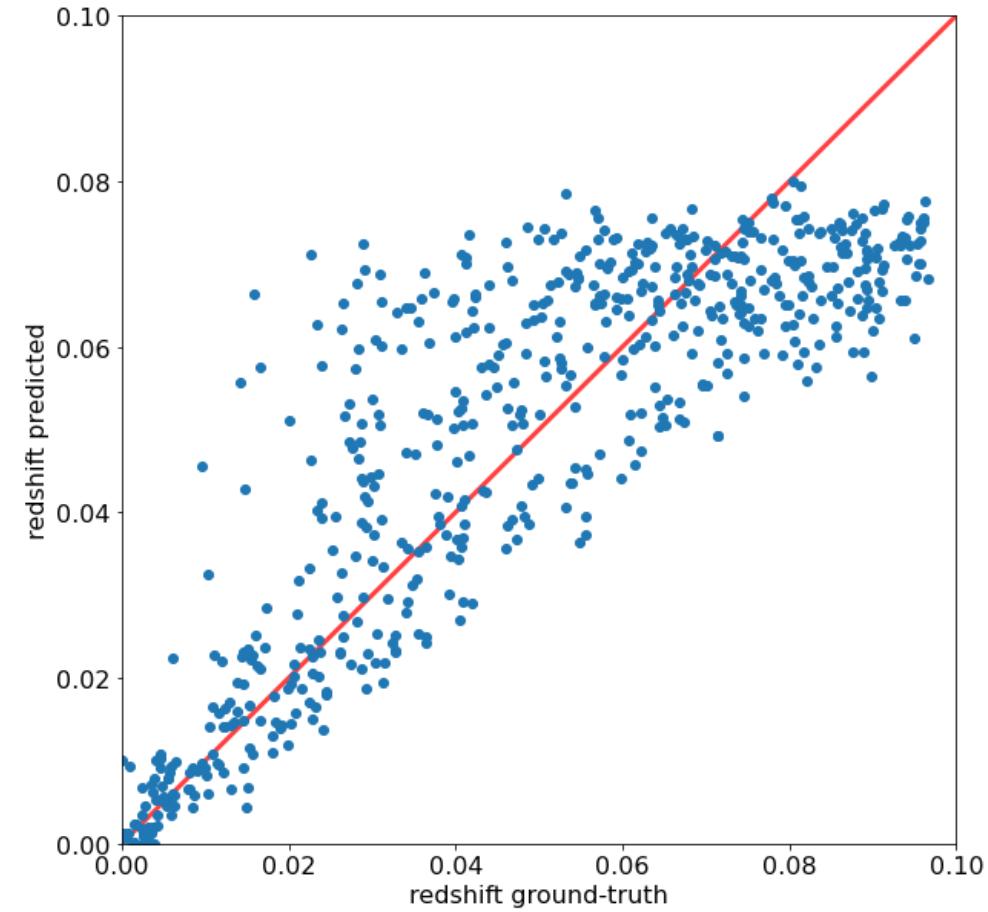


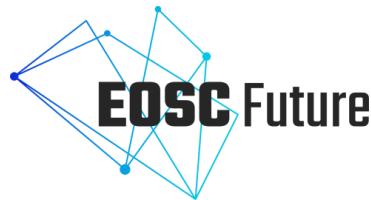
Flattening + Concatenation + FC layer with linear activation

ReLU activation function in CNN
Adam optimizer
batch size: 16
Number of training epochs: 100

<https://doi.org/10.3390/universe7110394>

MMML for GW-GRB results





Wavefier: a framework for multi-messenger astrophysics

Elena Cuoco, Alberto Iess, Filip Morawski, Barbara Patricelli, sara vallero, Emanuel Marzini, Alessandro Petrocelli, Alessandro Staniscia.

Wavefier: A framework for multi-messenger

WAVEFIER aims to set up a framework for analysis of different types of astrophysical data, paving the way to real-time Multi-Messenger astronomy studies. This is done leveraging the newest available software technologies.

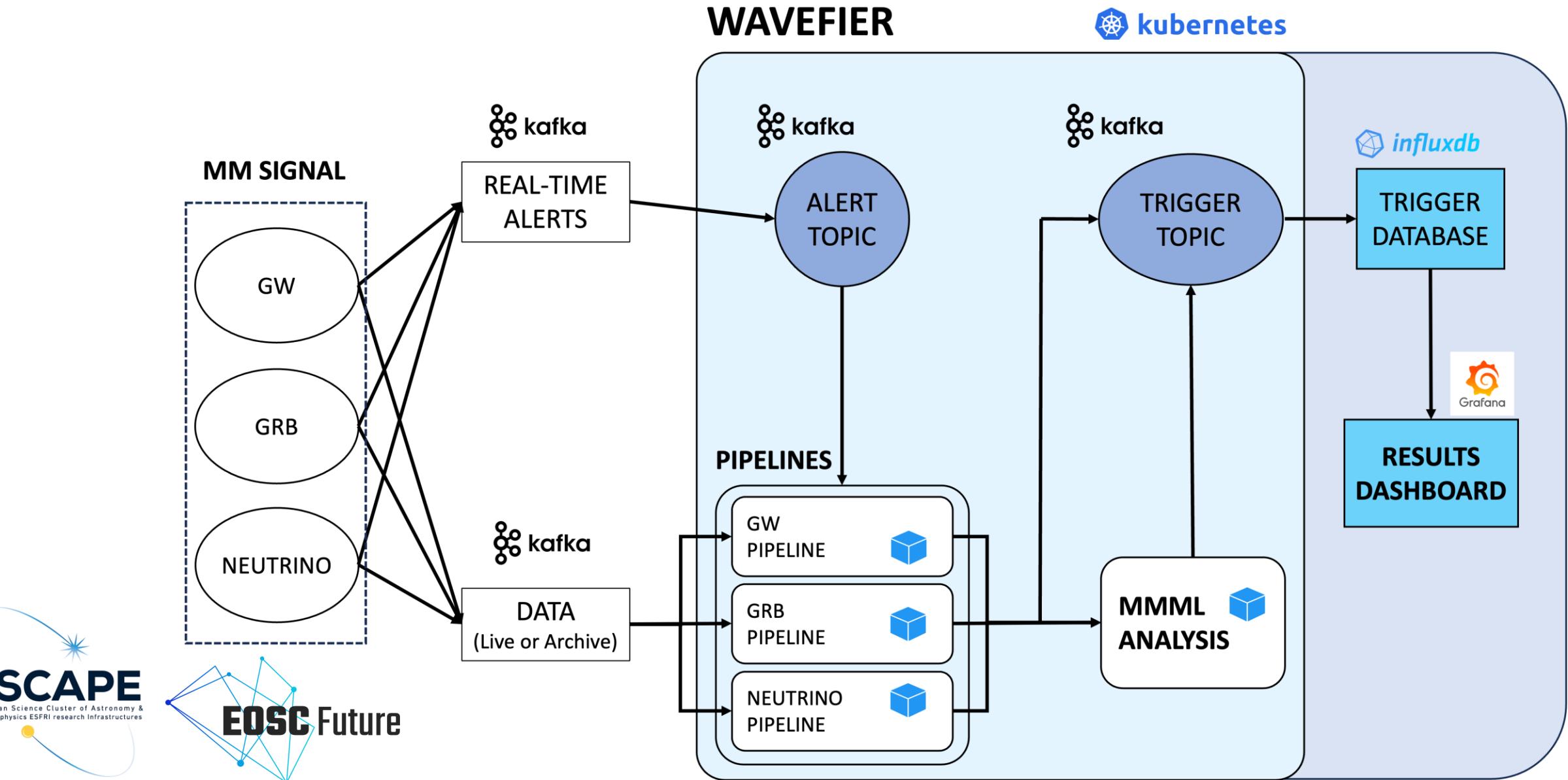
KEY POINTS

- Setup a prototype for a **real time** and offline pipeline for the detection and analysis of transient signals and their **automatic** classification.
- Best practice for **software management**.
- Software architecture solutions to prototype a **scalable** pipeline for **big data** analysis in GW context.
- **Interoperability** and access to data and services.
- **ICT services** supporting research infrastructures.
- Use of **data in network** infrastructures and service.

IN COLLABORATION WITH:

Elena Cuoco, Emanuel Marzini, Filip Morawski, Alessandro Petrocelli, & Alessandro Staniscia. (2019). A prototype for a real time pipeline for the detection of transient signals and their automatic classification (1.0). Zenodo. <https://doi.org/10.5281/zenodo.3356656>

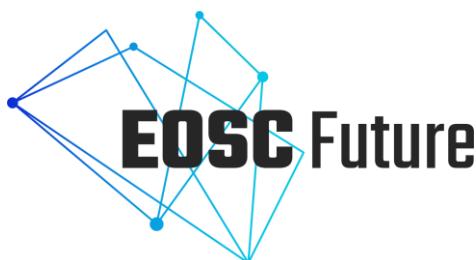
Wavefier GOAL



WAVEFIER: Fast Radio Burst and Gamma ray bursts

- Successfully tested attaching to NASA GCN notices alerts for GRB from Fermi and INTEGRAL via Kafka.
- Successfully imported FRB CHIME and Fermi LAT catalog data in .fits format.
- Grafana dashboard for FRB data visualization.

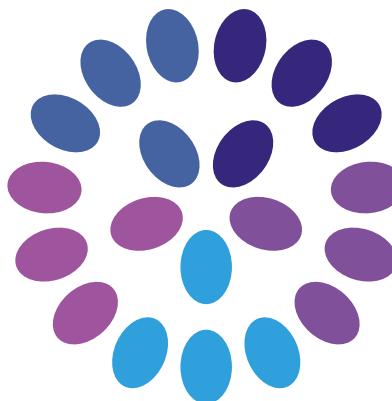
Alberto less



A. less, G. Principe

ALMA MATER STUDIORUM
UNIVERSITÀ DI BOLOGNA

What's next?



OSCARS

Open Science Clusters' Action
for Research & Society

Wavefier in production
(thanks to ACME and
OSCARS project) on
computing center

Test on new simulation
data for ET

Merger of 3 and more
messenger (open or
simulated data)

Preparing more and
more ML based
pipeline for O5 or 3°
generation detector

Thank you for your attention

ALMA MATER STUDIORUM
UNIVERSITÀ DI BOLOGNA