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The LVK detector network
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GWTC-04

https://arxiv.org/abs/2508.18082

neighborhood of
gravitational waves

EM Neutron Stars

Masses in the Stellar Graveyard [ — }
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The catalog now contains 218 candidates, 128 new compact binary coalescence candidates

Spoiler: | won’t cover the results
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Detection summary up to O4c

04 Significant Detection
Candidates: 254 (283 Total - 29 Retracted)

—_—

O4 Low Significance Detection Candidates:
5136(Total)

https://gracedb.ligo.org/superevents/public/O4/
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Cumulative Detections/Candidates

0

01+02+03+04a = 218, 04b* = 105, O4c* = 68, Total = 391

*04b and O4c entries are preliminary candidates found online.

Ol 02 O3a 03b O4a ,/ 0O4b O4c
Details:
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LIGO-G2302098(b84be9c4), updated on 18 November, 2025 Credit: LIGO-Virgo-KAGRA Collaboration
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GW170817: the first Multi-messenger GW event

o coincident short GRBs detected in gamma rays
Sky localization
ofirst direct evidence that at least some BNS mergers are
= progenitors of short GRBs
30° =
Gravitational Waves X-ray
2 N
LIGO'VlrgO E<—T s Chandra X-ray

Observatory

the host galaxy has been identified: NGC
4993

-30° J -30°
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GW170817

GRB by Fermi GBM Timeline

+1.7sec

17/08/17 12:41:04 UTC

+10.8h +16days

an optical/infrared/UV counterpart

(AT2017gfo) has been detected
Optical/UV/NIRkilonova

o . o first spectroscopic identification of a kilonova
i i (- | 1M2H Swope DLT40 VISTA
| ) 3 _ JVIA
el T T T
; 1 1 - S o . N ]
i Wi 110.86n i 11.08n Wz K e An X-ray and a radio counterparts have been
I d 7\‘"% vl MASTER DECam Las Cumbres ' 5 . e
? | ' . ‘ , identified
i AT}TM“'H 5 3 ,‘ y .. eoff-axis afterglow from a structured jet
11.31h, witdon  insm - )

Abbott et al. 2017 and refs. therein

See Samaya’s talk
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Next generation GW detectors
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Gravitational wave detector of 3rd generation
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Detection horizon for black-hole binaries
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From lacovelli et al, ApJ, 2022
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MULTIMESSENGER

We expect to detect thousand of MMA/year with ET

ATHEN
1044 :
Nancy Roman Transient Astrophysics Probe (TAP)
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Redshift
Dupletsa et al. 2022, Ronchini et al. 2022 Credit: M Branchesi
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Should we panic now, or just enjoy the
cosmic fireworks?
Artificial intelligence for GW science

Multimodal Machine Learning for
Multimessenger physics
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Machine learning for Gravitational wave science

A collection of research linked to COST Action CA17137, g2net,

is presented in this book
Springer Sevies in Astsophysics sad Cosmakogy

Elena Cuoco Editor

Gravitational

Wave Science
with Machine
Learning

Home > Living Reviews in Relativity > Article

Applications of machine learningin
gravitational-wave research with current

interferometric detectors

Review Article | Openaccess | Published: 27 February 2025

Volume 28, article number 2,(2025) Cite this article

d Y‘I}E\

Most recent review paper \\//
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LVK search types

Short duration , Long duration

continuous
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Gravitational Wave detector data

e Time series sequences:

noisy time series with low amplitude GW signal buried in

3 km
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Data representations

le-20

—— Raw data
—— Filtered data with filtfilt
— Filtered data with Ifilter
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The data analysis workflow

]

Auxiliary @
& ]
Environmental o

Sensors g

Calibration I .|

~ ~
SEARCHES
Template Make Triggers
Matching {with False Alarm Rates,
- Signal to Noise Ratio)
Whitening Identified Signals
o | | J
ht) Detector
Chararacterization Event ’
& - | Valiclation
Data Quality

Instrument Performance

B P Abbott et al 2020 Class. Quantum Grav. 37 055002
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The data analysis workflow and Al

SEARCHES

Make Triggers
(with False Alarm Rates,
Signal to Noise Ratio)
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=

PARAMETER
ESTIMATION

- Detector '
Chararacterization Event
Calibration & Validation
Data Quality

Searches 1
I i
I I
I U
| Template Bank |
! Detection |
[ Pipelines i
: I Interferometers
1

CNN (1D, 2D), RNN, |
| Waveform ) P LSTM(, Anomgly i
I Generator detection... |
: ' Parameter
. Surrogates, GP. 1 ! Estimation Aoy
! GANs ) craroen
I J 1 S
—/
o A ! # ¥ NF, CVAE...
""""""""""""""""""" ,
I
1
) i
Data Characterization
h t Data Quality
( ) Catalogs &
GW Detectors Calibration Glitch classification, Event Validation Astrophysical

interpretation

. 'y Noise cleaning and
mitigation, glitch
generation

Cuoco, E., Cavaglia, M., Heng, |.S. et al.

Instrument Performance

B P Abbott et al 2020 Class. Quantum Grav. 37 055002

Applications of machine learning in gravitational-wave research with current interferometric detectors.

17 Living Rev Relativ 28, 2 (2025). https://doi.org/10.1007/s41114-024-00055-8
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“Al” /ML and gravitational waves

~

* For some signal types (e.g. CBCs, CWs) we know exactly what we’re looking for,
but might not be able to efficiently cover the full generic parameter space with
“traditional algorithms”.

SO, "Wglslgsl " * We also search for “unknown knowns” (waveforms that can’t be fully predicted)
ML helpf; and “unknown unknowns”. j

* We are looking for extremely faint signals in our detector noise:
only the loudest CBCs (peak strain ~1021) can be directly “seen” in the output
timeseries.

Credit goes to D. Keitel for shaping, for EUCAIFCon 2025,
Cagliari, 2025-06-16, most of the next 20 slide content you’re about to see. T,
18 UNIVERSITA DI BOLOCTB




Detector noise: Is it ideal?

Spectrogram of V1:spectro_LSC_DARM_300_100_0_0 : start=1189644747.000000 (Sun Sep 17 00:52:09 2017 UTC)
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https://www.zooniverse.org/projects/zooniverse/gravity-spy
https://www.zooniverse.org/projects/zooniverse/gravity-spy
https://www.zooniverse.org/projects/zooniverse/gravity-spy

Non-stationary and transient noise
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GW detectors are extremely complex and intricate machines

Near-Gaussian noise floor = superposition of instrumental and
environmental noise sources

Plus non-stationary and non-Gaussian components

ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA



ML for Detector design, operation and characterisation

10724

- Measured noise (04) ~ =re==

= Sum of known noises

= = Quantum
— = Thermal ~ seeee
Residual gas
------ Seismic
Auxiliary length control
------ Alignment control

Beam jitter
Laser

- Photodetector dark

Penultimate-mass actuator
Suspension damping (quads+triples)
04, LHO

03,LLO

10-25

10
[Capote+2025

21
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Frequency [Hz]

(b) Noise budget for the LIGO Livingston Observatory, as of October 2023.

THE ART OF NAMING GLITCHES

RAIN-DROP

FRINGEY THE SEA MONSTER

[N. Kijbunchoo]

ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA


https://doi.org/10.1103/PhysRevD.111.062002

Detector design, operation and characterisation

ML could
offer
possibilities
for:

22

optimising detector design across an
iImmensely-dimensional parameter space

real-time optimization of detector parameters
(augmenting the control loops)

Real-time noise prediction and mitigation:
correlations between environmental/instrumental
monitors and the main GW strain channel

Non-linear noise regression and subtraction after
data-taking

Glitch identification and removal (non-Gaussian
transients)

Pre- Power-
stabilized recycling 5
mirror PR .
laser © Beamsplitter

POP L_/ X-arm
Electro- %/ﬁ]
Optic

modulator PR3

Input REFL SR3
mode E::

cleaner

Faraday

[Capote+2025 PRD111.062002]  isolator &

cleaner Squeezer cavity
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https://doi.org/10.1103/PhysRevD.111.062002

Detector design, operation and characterisation

Some noise components have secure “witness channels”:
auxiliary sensors that allow monitoring their time-varying strength and
subtracting the effect from the GW strain channel

Vajente+2020

PRD101,042003:

“Machine-
learning
nonstationary
noise out of
gravitational-

wave detectors”

> NonSENS:
“Non-linear
Noise

Subtraction”

23

parameterised model for non-linear relations

between channels

10-21
optimised with gradient descent model (ADAM) ¢
O3: non-linear subtraction of narrowband

instrumental lines, in particular 60 Hz power line 2

mee - Original
Stationary
—— Non-stationary

O4: mainly to remove beam jitter noise

[Vajente+2020 PRD101.042003]

57 58 59 60 61 62 63

- T ,

z\ﬁf :/_\ /
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https://doi.org/10.1103/PhysRevD.101.042003
https://doi.org/10.1103/PhysRevD.101.042003

Detector design, operation and characterisation

THE ART OF NAMING CLITCHES ° LOUd, ShOrt, broadband, Complex—morphology glitCheS
are among the most problematic noise artifacts.

RAIN-DROP

* Gravity Spy: synergy of citizen science and machine learning

— Zevin+ 2017 , 2023

— triggers flagged by excess power algorithm (“omicron”)

— basic data unit: time-frequency spectrograms

— initial pre-labeled data to train a CNN for pre-classification
— volunteers on Zooniverse” confirm/refine classification

FRINGEY THE SEA MONSTER — feedback loop to retrain the network
* resultsused e.g. inrapid response to online alerts

* actual glitch removal mainly with BayesWave algorithm [Hourihane+2022

n e ]

’

D aa R

*
ANTMATTESAMETOOWCS, [ ]
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https://doi.org/10.1088/1361-6382/aa5cea
https://doi.org/10.1140/epjp/s13360-023-04795-4
https://doi.org/10.1103/PhysRevD.106.042006
https://www.zooniverse.org/projects/zooniverse/gravity-spy
https://www.zooniverse.org/projects/zooniverse/gravity-spy
https://www.zooniverse.org/projects/zooniverse/gravity-spy

CNN Glitch classification

Frequency [Hz]

Frequency [Hz)
g

Spectrogram for each image

2-seconds time window to highlight
features in long glitches

frequency [H2]

Frequency [Hz)
g

Data is whitened

Time [s.] - 1196363873.451 T [3.]- 119634 5.005
:
OptIO 1al contrast stretch (©) ()
0343_SCATTEREDLI ISTLELI

Simulations now available on FigShare

Razzano, Massimiliano,; Cuoco, Elena (2018): Simulated image data for testing
machine learning classification of noise transients in gravitational wave detectors
(Razzano & Cuoco 2018). figshare. Collection.
https.//doi.org/10.6084/m9.figshare.c.4254017.v1
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https://doi.org/10.6084/m9.figshare.c.4254017.v1
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Detector design, operation and characterisation

Can we embed more ML/Al into the day-to-day detector operation?
(control loops, lock acquisition and loss prevention, ...) (2 e.g. YOLO point absorber
detection, Goode+ 2411.16104)

More production uses for improved noise subtraction and glitch mitigation?
(e.g. DeepClean [Saleem+2024 CQG41,195024], DeepExtractor [Dooney+ 2501.18423])

ML/AI for hunting narrow spectral lines, which especially affect long-duration signal
searches?

Realistic noise simulation (e.g. Gengli glitch generator: Lopez+ 2205.09204)

In Iproved automation of calibration and detector characterisation :%}’EW\(%\
3¢ g 37)
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https://arxiv.org/abs/2411.16104
https://doi.org/10.1088/1361-6382/ad708a
https://arxiv.org/abs/2501.18423
https://arxiv.org/abs/2205.09204

Control system via Reinforcement learning

Autonomous Fabry-Perot cavity locking
via deep reinforcement learning

Mateusz Bawaj'~ Andrea Svizzeretto?

mateusz.bawaj@unipg.it andrea.svizzeretto@dottorandi.unipg.it

June 17,2025

EUROPEAN Al FOR FUNDAMENTAL PHYSICS CONFERENCE

Implementation attempt
ML agent

current state of the environment

; — action chosen by the agent Irput Loyer (2 neurons)

*Dipartimento di Fisica e Geologia, Universita di Perugia; *INFN, Sezi¢

reward generated by the reward funciton

Hiddlen Layer 1 ({00 neurons)

|
p
AGENT - ,
L | Hicelen L.o.yc_r 2 (BR00 neurons)

| Output Layer (I neuron)
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Gravitational-Wave Transient Catalog

10 Years of Detections (2015-2024) of Compact Binary Coalescences with Black Holes and Neutron Stars

it A

Inspiral Merger Ring-
down

{ sisge

T — Numerical relativity
B Reconstructed (template)
1
— Black hole separation
=== Black hole relative velocity

w
x
c
o
S
@
—
]
a
]
w

[LVC2016 /

evolution of compact objects | i

tests of GR in strong-field regime N = o %

‘@ . ” Ryan Nowicki | Bill Smith | Karan Jani ANy : G’G W VANDERBILT (@
standard siren” cosmography ; &) F% Vo @

nuclear matter at extreme
densities
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https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241102

01+02+03+04a = 218, 04b* = 105, O4c* = 68, Total = 391
*04b and O4c entries are preliminary candidates found online.

Compact binary coalescences E

5 2201 O1 02

Signal waveforms can be predicted from General Relativity m

O3a 03b O4a

“Searches”: find candidates and estimate their significance: 5w B
e multiple matched-filter pipelines (fixed template banks) o ime tbori o o
e weakly-modelled pipelines too
“Parameter estimation”: Bayesian inference ‘3‘2
30 -
5 95 GW150914 |
Challenges: Full generic parameter space coverage E 20 |
.. 15 1
Search efficiency in periods affected by non-stationary noise g 10 LVT151012 |
5 ]
Computational cost of full Bayesian inference 0 §W1512|26 |

] ]
10 20 30 40 50 60

Robustness of Bayesian inference in the presence of noise glitches [LVC2016 PRX6.041015] mi*™ (M )

Latency for public alerts (enabling telescope follow-up)
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https://doi.org/10.1103/PhysRevX.6.041015
https://arxiv.org/abs/2409.02037

Compact binary coalescences — searches

Main promise of ML: front-load computational cost to training phase, find candidates even faster

GW g2net-Kaggle challenge™ and MLGWSC-1 [Schafer+2023 ]:

standardised data sets to compare ML solutions to each other, and standard matched filter .
AresGW™ [Nousi+2023 , Kolonari+2025 ], based on ResNet: /’:‘;\D‘
strong performance on MLGWSC-1, 8 new GW candidates reported from O3 data \ “‘j
SAGE™" [Nagarajan&Messenger ], OSNet feature extractor + ResNet/CBAM classifier:

further improvements on MLGWSC-1 over AresGW and matched filter

— paper also highlights 11 types of biases that challenge CBC detection with ML.:
training set construction, spectral bias, etc

Caveat: ML submissions often optimised to the specific parameter space of the

challenge, which could also be done to improve performance of standard methods!
(e.g. Kumar&Dent 2024 )

[*] (2021) | [**] | [**]
More examples:
Trovato+2024 s \\
Marx+ e

ALMA MATER STUDIORUM
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https://doi.org/10.1103/PhysRevD.107.023021
https://doi.org/10.1103/PhysRevD.108.024022
https://doi.org/10.1088/2632-2153/adb5ed
https://arxiv.org/abs/2501.13846
https://doi.org/10.1103/PhysRevD.110.043036
https://www.kaggle.com/c/g2net-gravitational-wave-detection/
https://www.kaggle.com/c/g2net-gravitational-wave-detection/
https://www.kaggle.com/c/g2net-gravitational-wave-detection/
https://www.kaggle.com/c/g2net-gravitational-wave-detection/
https://www.kaggle.com/c/g2net-gravitational-wave-detection/
https://www.kaggle.com/c/g2net-gravitational-wave-detection/
https://www.kaggle.com/c/g2net-gravitational-wave-detection/
https://github.com/vivinousi/gw-detection-deep-learning
https://github.com/vivinousi/gw-detection-deep-learning
https://github.com/vivinousi/gw-detection-deep-learning
https://github.com/vivinousi/gw-detection-deep-learning
https://github.com/vivinousi/gw-detection-deep-learning
https://github.com/vivinousi/gw-detection-deep-learning
https://github.com/vivinousi/gw-detection-deep-learning
https://github.com/nnarenraju/sage
https://doi.org/10.1088/1361-6382/ad40f0
https://arxiv.org/abs/2403.18661

Waveform building

PHYSICAL REVIEW D 101, 063011 (2020)

Precessing numerical relativity waveform surrogate model for binary black

holes: A Gaussian process regression approach

D. Williams®" and 1. S. Heng
SUPA, University of Glasgow, Glasgow G12 800, United Kingdom

J. Gair
Max Planck Instinute for Gravitational Physics,

Potsdam Science Park, Am Miihlenberg 1, D-14476 Potsdam, Germany

J. A. Clark and B. Khamesra

Center for Relativistic Astrophysics and School of Physics,
Georgia Institute of Technology, Atlanta, Georgia 30332, USA
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» Gaussian process regression (GPR) to compute the waveform at
points of the parameter space not covered by numerical relativity.

* GPR has been used to build surrogate models of both non-
precessing and precessing BBH systems.
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See also:

Z. Doctor et al, “Statistical gravitational
waveform models: What to simulate
next?”

Phys. Rev. D 96, 123011 (2017)
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Compact binary coalescences - inference

5 mm [ ALINFERENCE (IMRPhenomXPHM)
° D|NGO [Dax+2021 , 2023 ]: J == DINGO-IS (SEOBNRvAPHM)
neural posterior estimation (with normalising flows)
in seconds—minutes instead of hours—days per event @ ZAJ
= '. .
T ! 0
e EIS .
128 dims P v '“
[ ] , : . le
flow f parameters @ \a, %\ A o
0 M, [My)]
[Dax+2021 [Dax+2023 |
* initially working best for high-mass, short binary-black-hole signals, Other examples:
now also extended to binary neutron stars [Dax+2025 ] Nessai: Williams+2021
_ . . _ Peregrine: Bhardwaj+2023
* special promise for otherwise extremely expensive waveforms, AMPLFI: Chatterjee+ /\,
e.g. including orbital eccentricity [Gupte+ ] & i \%\
&
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https://doi.org/10.1103/PhysRevLett.127.241103
https://doi.org/10.1103/PhysRevLett.130.171403
https://doi.org/10.1038/s41586-025-08593-z
https://doi.org/10.1038/s41586-025-08593-z
https://doi.org/10.1038/s41586-025-08593-z
https://arxiv.org/abs/2404.14286
https://doi.org/10.1103/PhysRevLett.130.171403
https://doi.org/10.1103/PhysRevLett.127.241103
https://github.com/dingo-gw/dingo
https://github.com/dingo-gw/dingo
https://github.com/dingo-gw/dingo
https://doi.org/10.1103/PhysRevD.103.103006
https://doi.org/10.1103/PhysRevD.108.042004
https://arxiv.org/abs/2407.19048
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open problems &

Compact binary coalescences future directions

p
Optimal network architectures and training methods to deal with the typical kinds of biases identified by
2501.13846 and with the full complexities of real detector data

& o4
p

Fair comparisons between ML and “traditional” search algorithms, avoiding fine-tuning
N /
p

Finding the right mix for fruitful coexistence of fast neural and “full” Bayesian inference
& 4
p

Passing detailed LVK scientific&code review and operational stability criteria for production runs,

including low-latency alerts (gracedb.ligo.org | emfollow.docs.ligo.org/userguide)

4

\&
P
ML in waveform modeling itself

&
&

Future detectors:
&

¢ longer signal durations
(e.g. Hu+2412.03454, Dax+2025 Nature 639,49-53)

¢ huge detection rates ( > overlapping signals!)
(e.g. Langendorff+2023 PRL.130.171402, Alvey+ 2308.06318,
Santoliquido+ 2504.21087)
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https://arxiv.org/abs/2501.13846
https://gracedb.ligo.org/
https://emfollow.docs.ligo.org/userguide/
https://arxiv.org/abs/2412.03454
https://doi.org/10.1038/s41586-025-08593-z
https://doi.org/10.1103/PhysRevLett.130.171402
https://doi.org/10.1103/PhysRevLett.130.171402
https://arxiv.org/abs/2308.06318
https://arxiv.org/abs/2504.21087
https://arxiv.org/abs/2501.13846
https://gracedb.ligo.org/
https://emfollow.docs.ligo.org/userguide/
https://emfollow.docs.ligo.org/userguide/
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GW bursts

Less well-modeled GW transients: eccentric BBHSs,
supernovae, magnetars, cosmic strings

Search with more generic methods:
excess power, pattern recognition, ...

No detections so far. (Besides BBHSs!)

Non-detections can still yield physical constraints:
nearby supernovae, glitching pulsars, ...

[NASA/ESA/ASU]

K""E-EN
> AN AN,

| ‘/ \’O.
|ffa i 3 =)
i‘\ B /’Eﬁ
2N |l e/
\@M
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state of
GW bursts the art

Less well-modeled GW transients: eccentric BBHs, supernovae, magnetars,
cosmic strings,... and unknown unknowns!

300 ¢

Most LVK algorithms based on some form of excess power
and searches for correlated structures in time-frequency spectro

200

100

Frequency (Hz)

Also possible coherently across multiple detectors

0
672 6725 673
Time (sec)

Basically: anomaly detection and pattern recognition

200

Weakly-modeled techniques, . N
such as wavelet decomposition, _ | * i '
also allow signal reconstruction

100 —

Frequency (Hz)

0 " " L . 1 . ! 1 1 !
672 672.5 673
Time (sec)

[Drago+2021 ]

0.32 0.34 0.36 0.38 0.40 0.42 0.44
Time (s)

s [LVC2016 ] ONIVERSITA DI BOLOGNA



https://doi.org/10.1016/j.softx.2021.100678
https://doi.org/10.1103/PhysRevD.93.122004
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GW bursts. ML pipeline example

Strain

INPUT 1024 x 3

MLy pipeline
— Skliris+2024

[ @xicomives |
*

Dual architecture for coincidence
and coherent modes across detectors

First tested on LIGO-Virgo O2 data

Now LVK-reviewed and running

42x1 Conle 128

+
36 x 1 ConvlD 128

@-

“in production” on O4 data

[

Average Pooling

Output 2

Noise /Signal

Residual
Block 1

Residual
Block 2

Residual
Block 3

Strain Correlation

Input 1024 x 3 Input 60 x 3

Stride 4

Stride 2

Global
Average
Pooling

Stride 2
Global

Average
Pooling

Output 2

Incoherent / Coherent
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https://doi.org/10.1103/PhysRevD.110.104034
https://git.ligo.org/mly/mly
https://git.ligo.org/mly/mly
https://emfollow.docs.ligo.org/userguide/analysis/searches.html#unmodeled-search
https://emfollow.docs.ligo.org/userguide/analysis/searches.html#unmodeled-search
https://emfollow.docs.ligo.org/userguide/analysis/searches.html#unmodeled-search
https://emfollow.docs.ligo.org/userguide/analysis/searches.html#unmodeled-search

open problems &
GW bursts future directions

Besides pure ML pipelines like MLy, also “traditional” ones getting enhanced with ML ingredients,
e.g. XGBoost postprocessing for cWB [gwburst.gitlab.io] - Mishra+2021 PRD104,023014
> used on O3 data in Szczepanczyk+2023 PRD107,062002, Mishra+2025 PRD111,023054

Bridging the gap between “modelled” and “unmodelled burst” analyses
for complicated sources like supernovae, with simulation-based inference etc.

Pure anomaly detection frameworks for the known unknowns
(e.g. GWAK, Raikman+2025 MLST5,025020 and 2412.19883)
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Interpretable/explainable Al to understand what is being detected?

TR 57
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https://gwburst.gitlab.io/
https://doi.org/10.1103/PhysRevD.104.023014
https://doi.org/10.1103/PhysRevD.107.062002
https://doi.org/10.1103/PhysRevD.111.023054
https://doi.org/10.1088/2632-2153/ad3a31
https://arxiv.org/abs/2412.19883

Continuous Waves

s

Simple signal model > matched filtering

\,
>
Optimal fully-coherent analysis possible for known

pulsars with full timing model from EM observations
\,

(Computationally extremely challenging
for unknown sources: large parameter space
_and extremely fine required grid resolution

>
Semi-coherent methods provide best tradeoff so far

between sensitivity and computing cost

\,
>
Similar issues for long-duration CW-like transients

from glitching pulsars, BNS remnants, ...
\,

>
G2net-Kaggle challenge” mostly produced GPU-optimised
variants of “traditional” semi-coherent methods

\.

Sensitivity

Targeted
searches

Narrow-band

)

a review: Riles2023

searches
Directed
searches
Blind
[Sieniawska&Bejger2019] searches
>
Computational Cost

¥ (2023)
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https://www.kaggle.com/competitions/g2net-detecting-continuous-gravitational-waves
https://www.kaggle.com/competitions/g2net-detecting-continuous-gravitational-waves
https://www.kaggle.com/competitions/g2net-detecting-continuous-gravitational-waves
https://www.kaggle.com/competitions/g2net-detecting-continuous-gravitational-waves
https://www.kaggle.com/competitions/g2net-detecting-continuous-gravitational-waves
https://www.kaggle.com/competitions/g2net-detecting-continuous-gravitational-waves
https://www.kaggle.com/competitions/g2net-detecting-continuous-gravitational-waves
https://www.kaggle.com/competitions/g2net-detecting-continuous-gravitational-waves
https://www.kaggle.com/competitions/g2net-detecting-continuous-gravitational-waves
https://doi.org/10.1007/s41114-023-00044-3

Continuous Waves

Joshi&Prix 2023: “Novel neural-
network architecture for
continuous
gravitational waves”
[PRD108,063021]

|Identified the key challenges of
neural networks applied to CWs:

e signals not only faint, but spread across
long durations, with low local contrast
and rich structure

e morphology changes across parameter
space, Doppler shifts become more
challenging at high frequencies

For durations up to 10 days,
customised CNNs can almost
reach matched-filter

performance, but not yet quite.

Joshi&Prix 2024
[PRD110,124071]:
can also generalise to a single
network trained across 20-1000
Hz

Frequency (Hz)

40
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https://doi.org/10.1103/PhysRevD.108.063021
https://doi.org/10.1103/PhysRevD.110.124071

Continuous Waves(-like long transients)

BNS merger remnants: rapid spindown

41

500

450

400

350
1300

1250

frequency (Hz)
whitened strength

200
N 150

100

50

0 500 1000 1500 2000

time (s)

Miller+2019 : How effective is
machine learning to detect long transient
gravitational waves from neutron stars in a
real search?

Using CNNs on spectrograms

Pulsar glitches can trigger CW-like
transients of unknown duration

Modafferi+2023 :
Convolutional neural network search for
long-duration transient gravitational waves
from glitching pulsars

Hybrid approach:CNN on matched-filter
intermediate data
products

2 [

ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA


https://doi.org/10.1103/PhysRevD.100.062005
https://doi.org/10.1103/PhysRevD.108.023005
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open problems &

Continuous Waves future directions

Still working towards a “first detection” with any method (“traditional” or ML)

Immense sensitivity gap between optimal fully-coherent matched filter
and what is computationally feasible over large parameter spaces
(factors 5-50 in “depth” below the detector noise floor)

Neutron stars are known to be “messy” > make methods more robust to signal
deviations?

Need to overcome the challenges identified by PRD108,063021 and others:

e very faint signals, with even fainter local contrast and complex morphologies, that vary
strongly across parameter space
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https://doi.org/10.1103/PhysRevD.108.063021

Stochastic sighals and backgrounds

7

Persistent signals without deterministic models

\.
7

State of the art: primarily cross-correlation between 2+ detectors, already computationally [LVK 2021 ]
very efficient

\.
7

Key challenge: controlling correlated noise sources

\.
7

Not many example applications of ML to this yet

\.
7

Open problems & future directions: [APS/A Stonebraker]

\.

* ML noise mitigation?
e Early-universe physics through simulation-based inference?

¢ Intermittent, non-Gaussian backgrounds: enabling optimal Bayesian-style search for stochastic background from
faint CBC sources? [Smith&Thrane2018 PRX8,021019 ]

e Overlap with “burst” and CW-like searches for long-duration transients, d review: RBmOI‘tG|+2023

with possibly rather complicated waveforms (hewborn neutron stars, magnetars, ...)
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43 UNIVERSITA DI BOLOGNA


https://doi.org/10.1103/PhysRevX.8.021019
https://doi.org/10.1103/PhysRevD.104.022005
https://doi.org/10.1016/j.ppnp.2022.104003

Examples of GW Transient signal ML approaches

CBC

2 s11

1e—21 Sample BBH GW

2 s13

2 525
0
& 0
-2

518

Strain

2 he3.5

0.0 02 04 0’6 08 10 <0 W
Time [s] -2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
t[s]

(0Z07) 11BMOd ‘Msmelol '020n7) 'ssa| Wolj afew|

‘_2. AN E/FS
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GWs from Core Collapse Supernovae

Waveform depends
on progenitor star

Rare (~100 yrsin .
Milky Way) ‘

Different emission
mechanisms (Proto-
neutron star
oscillation, Standing
Accretion Shock
Instability (SASI),..)

Different simulation

models Largely Stochastic

Best waveform
models from
computationally
expensive 3D
simulations

Need an alternative to matched filter
approach

45

Nonburning hydrogen

Hydrogen fusion
Helium fusion

Carbon fusion
Oxygen fusion

Neon fusion

Magnesium __
fusion
Silicon fusion

Iron ash

Ott et al. (2017)

Potential explosion mechanism

GW emission MHD mechanism  Neutrino mechanism  Acoustic mechanism

Process (rapid rotation) (slow/no rotation) (slow/no rotation)
Rotating collapse - None/weak None/weak
and Bounce
3D rotational - None None
instabilities
Convection None/weak Weak Weak
& SASI
2
o]
PNS g-modes None/weak None/weak - )5
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Core-Collapse Supernovae models

‘ Andresen s11: Low amplitude, non-exploding, peak emission at lower frequencies

Radice s13: Non-exploding, lower amplitudes

Radice s25: Late explosion time, standing accretion shock instability (SASI), high peak

frequency

Powell s18: High peak frequency, exploding model

‘ Powell He3.5: ultra-stripped helium star, high peak frequency, exploding model
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tis]

less, Cuoco, Morawski, Powell,

https://doi.org/10.1088/2632-2153/ab7d31

ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA


https://doi.org/10.1088/2632-2153/ab7d31
https://doi.org/10.1088/2632-2153/ab7d31
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10—21

° ° —— AdVirgo 03 no sq.
MDC and CCSN GW simulations e
10—22_
h(t) = Fyhy(t)+ Fxhy(t)
3 10—23_
Distances: <
VO3 0.01 kpc to 10 kpc i 0
ET 0.1 kpc to 1000 kpc > E 10
Random sky localization &A N E -
&y | Lo-25 | |
& " S 10! 10° 103
Large SNR range 4% S Freguency [HZz]
Detector plane
Schutz (2011) _—
SINE GAUSSIAN & SCATTERED LIGHT GLITCHES
- - (t_to)z % 0.0
hSG(t) = ho SlIl(27Tf0 (t - to))e 272 © 05|
. —_ (t_to)g 1 0_12_21 . . l - scattere; light
hsi(t) = hosin(gsr)e” 2 Psi = 27 fot — to)[1 — K(t — to)?] . os]
-T—‘i 0.0
§ _osl
BACKGROUND STRAIN : simulated data sampled at 4096 Hz built from 10
V03 and ET projected SenSitiVitieS 0.00 0.25 0.50 0.75 i.[osc]) 1.25 1.50 1.75 2.00
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MultiLabel classification

Train on all (4 CCSNe waveform models + glitches).

Test
samples

///\\

Predicted data

he3.5 S$25

COMPLEX TASK ‘ LONGER TRAINING (> 1 hr)

48

Sine

gauss.

Scatt.

light

he3.5

s18

sll

sl3

sZ25

Sine Gauss.

Scatt. Light

ET, MERGED 1D & 2D CNN

Total accuracy: 89.6 %
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Test on 02 real Data

44 segments
(4096s per
segment) from

02 science run.

O

O

Fixed distance

of 1 kpc.

O

Added Three
ITF

classification.

O O

Added m39, Added LSTM
y20, s18np Networks,
models suited for time
(Powell, series data.
Mueller 2020).

4 D
Powell s18np: differs from s18 since simulation does not
include perturbations from the convective oxygen shell. As

A result, this model develops strong SASI after collapse. )

4 D
Powell y20: non-rotating, 20 solar mass Wolf-Rayet star
with solar metallicity.

\. J

e N
Powell m39: rapidly rotating Wolf-Rayet star with an initial
helium star mass of 39 solar masses

\. J
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Real noise from O2 science run

Noise PSD is non stationary.

Triggers

Multiple Glitch Families. Detector Signal Nowse | Tolal
Virgo V1 9273 47901 | 57174
Ligo L1 10480 3810 | 14290
Dataset: ~15000 samples. Ligo H1 10934 4103 | 15087
L1, H1, V1 5647 675 6322

SNR distribution is affected by ITF antenna pattern.

Imbalanced Dataset due to different model amplitudes.

F
=

10-20 1500 I 1.0
% o 0.8
= 1000
= _ 0.6
10 22 g
A e
T3] =
< 0.4
£ 500
h -23
A 10 0.2
10—24 : : o
10! 102 103 0.25 0.50 0.75
CCSN Classification on Simulated and Real O2 Data with CNNs and LSTMs ts]
A. less, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, A&A 669, A42 (2023)
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Multi-label task

. BI-LSTM, 2 recurrent layers

- ~10 ms/sample
- Best weights over 100 epochs

Total accuracy: 95.4 %

Glitch
Andresen_s11
Powell_s18p
Powell_s18np

Powell_he3.5

Predicted label

Powell_m39
Powell_y20
Radice _s13

Radice_s25

oy L) o o n )] (=] m un
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Real label

~2 ms/sample
Best weights over 20 epochs

Total accuracy: 96.5 %

Glitch

Andresen_sl1

80
Powell_s18p
[
60 | § Powell_s18np
0
% Powell_he3.5
40 % Powell_m39
o
Powell_y20
20 .
Radice_s13
Radice_s25
0 e — o =8 L =)} o ny LN
_8 — o] o m ™M o™ — o~
= 9 3 9 u E A TR
g 2w 523 808
4 3 2 3 2 2 35 3
S 3%z 58 2 ¢
-g n ) =} o
o o
<
Real label

A. less, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, A&A 669, A42 (2023)
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1D-CNN, 4 convolutional layers

Predicted label

- 2D-CNN, 4 convolutional layers
- ~3 ms/sample
- Best weights over 20 epochs

Total accuracy: 99.1 %

Glitch
A 11
ndresen_s 80
Powell_s18p
Powell s18np 60
Powell_he3.5
Powell m39 40
Powell_y20
. 2
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Analysis on 3 detectors and merged
models on 02 data

Total accuracy: 97.8 %

Glitch
Dataset breakdown: 675 noise, 329 s18p, 491 s18np,
115 he3.5, 1940 m39, 1139 y20, 76 s13, 1557 s25. Powell_s18p 80
Powell_s18np
Input to NNs have additional dimension (ITF) 5 60
— Powell_he3.5
3
% Powell_m39
o - 40
o
1.0 Powell_y20
08 Radice_s13 20
0.6
0.4 Radice s25
1500
0.2 0
= o o [Ty (@) o m Tg]
1000 V1 c 5 ¢ E o3 0
= = ""| | = o U U
s g = 3 ¢ =z 3T 3
500 § % E 5 & & &
Real label
07 0.25 0.50 0.75
g=1 A. less, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, A&A 669, A42 (2023)
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Determining the core-collapse supernova explosion
mechanism

Frequency (Hz)

ET

True Mechanism

CNN Classification Results

\ O x x
“0_@@ o oo™ ma@“o d\-\(@\e
20.0 40.0 40.0 0.0
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LlGO CNN Classification Results CNN Classification Results
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Jade Powell, Alberto less, Miquel Llorens-Monteagudo, Martin Obergaulinger,
Bernhard Muller, Alejandro TorresForne, Elena Cuoco, and Jose A. Font.
Determining the core-collapse supernova explosion mechanism with current
and future gravitational-wave observatories. Phys. Rev. D 109, 063019
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Gravitational wave modelling: template matching

GW detection of binary systems relies on
matched-filter analysis. Template accuracy is
crucial!

Accurate solutions of the Einstein equations for
binary sources can be obtained with
Numerical Relativity (NR) simulations.

High computational cost prevent the
production of NR waveforms catalogs spanning
the full parameter space.

LIGO and Virgo rely on approximate solutions
that are traditionally obtained through the
effective-one-body or phenomenological
modeling approaches.

How can machine learning help?
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Example for detection/classification for CBC signals: Anomaly
Detection

Create a deep learning pipeline allowing detection
of anomalies defined in terms of transient signals:
gravitational waves as well as glitches.

Additionally: Consider reconstruction of the

signal for the found anomalies.

Detector
strain

+ y Whitening

| Deep Learning

Neural Network

.

GW —
Training
waveforms
ALMA MATER STUDIORUM
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Filip Morawski, Michat Bejger, Elena Cuoco, Luigia Petre, 2021 Mach.
Learn.: Sci. Technol. 2 045014




Autoencoder workflow

L 1
le=21 le-21 Sample BBH GW le—21
5 2
50 2
c £ =
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02 data - MSE Distributions
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GW150914
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v 4

approach |

Overlapping signals in 3-G detectors: tansformer M
vl U

KENN

N\

Positional

Attention(Q, K, V) = Mjflumx((% W ! : : : : : d d EHCU d | ﬂg
: . *
SCALED DOT-PRODUCT ATTENTION : , 7 ?‘W

DECODER . - Tokenizer
MULTI-HEAD ATTENTION

ENCODER
Y

- Convolutional

~ m Embeddlng Multi-Head
[ 0] Attention
iy &= Nx
i QU KWE VW - Transformer Add and Norm

. o V4 Encoder

e S Feed
Forward

Add and Norm

Lucia Papalini, Federico De Santi, Massimiliano Razzano, Ik Siong Heng, Elena Cuoco,
arXiv:2505.02773 Accepted on CQG
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Multimodal Analysis for multi-
messenger astrophysics

Cuoco, E., Patricelli, B., less, A. et al. Computational challenges for multimodal
astrophysics. Nat Comput Sci 2, 479-485 (2022).
https://doi.org/10.1038/s43588-022-00288-z
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GW170817: the first Multi-messenger GW event

o coincident short GRBs detected in gamma rays
Sky localization
ofirst direct evidence that at least some BNS mergers are
= progenitors of short GRBs
30° =
Gravitational Waves X-ray
2 N
LIGO'VlrgO E<—T s Chandra X-ray

Observatory

the host galaxy has been identified: NGC
4993

-30° J -30°

0 25 S50 75
Mpc

GW170817

GRB by Fermi GBM Timeline

+1.7sec

17/08/17 12:41:04 UTC

+10.8h +16days

an optical/infrared/UV counterpart

(AT2017gfo) has been detected
Optical/UV/NIRkilonova

o . o first spectroscopic identification of a kilonova
i i (- | 1M2H Swope DLT40 VISTA
| ) 3 _ JVIA
el T T T
; 1 1 - S o . N ]
i Wi 110.86n i 11.08n Wz K e An X-ray and a radio counterparts have been
I d 7\‘"% vl MASTER DECam Las Cumbres ' 5 . e
? | ' . ‘ , identified
i AT}TM“'H 5 3 ,‘ y .. eoff-axis afterglow from a structured jet
11.31h, witdon  insm - )

Abbott et al. 2017 and refs. therein
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Multi-Messenger Astrophysical signals

CBC events

Seconds Milliseconds 10 ms 100 ms Minutes-Hours Hours-Days Days-Weeks Months-Years
Time
r-process Freen
BH o —
P L - :
( o IR _— ® <025 - Shocked ISM

GW chirp

™ WA

EM X-ray / radio
precursor
Phase Inspiral Dynamical
(Merger)
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Short GRB
W
Kil Radio
X-ray extended s transient
emission plateau
Accretion Remnant

CCSN events

Time from collapse start ms s Hours-Days Days-Weeks Months
Neutrino
Si-burning emission
-7 CCSN neutrinos
GW
GW burst
Long GRB
UV/optical cooling
EM
Progenitor emission SBO X-Ray/UV
........................................ - CO”EPSS
Progenitor (Bounce) Accretion NS Cooling
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Multimodal inputs

The “world” communicates via different modalities

Visual:Images/videos

Text: Natural language
processing

Speech/audio signal

63

Multimodal analysis of Gravitational Wave
signals and Gamma-Ray Bursts from hinary
heutron star mergers

Elena Cuoco, Barbara Patricelli, Alberto less, Filip Morawski

A major boost in the understanding of the universe was given by the revelation of
the first coalescence event of two neutron stars (GW170817) and the observation
of the same event across the entire electromagnetic spectrum. With 3rd
Generation gravitational wave detectors and the new astronomical facilities, we
expect many multi messenger events of the same type. We anticipate the need
10 analyse the data provided to us by such events, to fulfill the requirements of
real-time analysis, but also in order to decipher the event in its entirety through
the information emitted in the different messengers using Machine Learning. We
propose a change in the paradigm in the way we will do multi-messenger
astronomy, using simultaneously the complete information generated by violent
phenomena in the Universe. What we propose is the application of a multimodal
machine learning approach to characterize these events.

e =
o E o 2

T — —_— ~ W
—_— ———
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How to combine different information?

Analysis

Feature pipeline

extraction

Multimodal analysis of Gravitational Wave
signals and Gamma-Ray Bursts from binary
neutron star mergers

Elena Cuoco, Barbara Patricelli, Alberto less, Filip Morawski

A major boost in the understanding of the universe was given by the revelation of
the first coalescence event of two neutron stars (GW170817) and the observation
of across the entire pectrum. With 3rd

i tat d the new facilities, we

expect many multi messenger events of the same type. We anticipate the need

to analyse the data provided to us by such events, to fulfll the requirements of
real-time analysis, but also in order to decipher the event in its entirety through

the information emitted in the different messengers using Machine Leaming. We
propose a change in the paradigm in the way we will do multi-messenger F t
astronomy, using simultaneously the complete information generated by violent e a U re

phenomena in the Universe. What we propose is the application of a muftimodal 5
extraction

machine learning approach to characterize these events.

L~ Feature

R S ' extraction

Image captioning, lip reading or video sonorization, sentiment analysis...

ALMA MATER STUDIORUM
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Multimodal Machine Learning (MMML)

>

Time series encoder

Sample inputs Classifier/Regression )-:};; Results/metrics

> Image encoder
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Example of

Medical
applications

Merge
informations
from
images,
symptoms,
blood or
other
analysis,...

MMML in other fields

Speech
recognition

Images,
videos,
captions,
labial,..

Spatial
information,
audio,
multi-
Sensors,...

Biometrics,
images, text,
speech,...

Gemini

Our ger
CMMH\G.' Build with Gemini >

Genetic

histopathologi
c diagnosis,
cytogenetic,...

Sentiment
analysis

Text, images,
etc...

ALMA MATER STUDIORUM

UNIVERSITA

L

) BOLOGNA



67

MMML for Astrophysics

Data representation Features

Object
detection

Multi-modal
ML model

recognition

nN
o
=

Multi-messenger
event

-
o
=

Frequency [Hz]

Sequence

025 030 "075 analysis
Time-frequency

0

Signal messengers
ML model type

Video
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Case study: Application to GW-GRB signals

= 1750 4 Lightcurve from Fermi/GBM (50 — 300 keV)
=
wn
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S
S |
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Credit: NSF/LIGO/Sonoma State University/A. Simonnet credits: LIGO/VIRGO collaboration; Abbottetal. 2017, ApJ, 848, 13
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Goal of the project

To estimate the redshift (z) of GRBs associated

with BNS mergers

e We have a bunch of simulated GRBs, and we assume that we

know z only for a fraction of them;
e We train the pipeline on the GRBs with known z;

e We predict z using joint GRB and GW analysis




Simulations: what we simulated

Generation of a population of BNS

merging systems

Simulation of the associated GW
md Signals and GW data for a detector
such as the Einstein Telescope

Multi-messenger signals from BNS

mergers in 3 steps:

Simulation of the associated short
= GRB light curve as observed by a
Fermi-like detector

Cuoco, E.; Patricelli, B.; less, A.; Morawski, F. Multimodal Analysis of Gravitational Wave Signals and Gamma-Ray Bursts from Binary Neutron Star Mergers. Universe 2021, 7, 394.
https://doi.org/10.3390/universe7110394
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Binary Neutron Star population

100-

50

0 200 400

Distance (Mpc)

https://doi.org/10.3390/universe7110394

NS spins: aligned; maximum value: 0.05

Focus on sources giving rise to an on-axis
GRB -> maximum inclination of the BNS
system fixed to 8 deg NS masses: uniform

distribution between 1 and 2.5 M

BNS Distance: uniform distribution between 1
and 500 Mpc

ALMA MATER STUDIORUM
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GW detector noise: Einstein Telescope
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Electromagnetic simulations

We assume that all BNS mergers are associated with a
short GRB

We simulate the GRB afterglow gamma-ray light
curves following the approach in Patricelli et al. 2016:

light curve corrected to take into account

GRB 090510 as a prototype -(T)ggsd;%tance of the sources with respect to GRB

*A range of possible GRB isotropic energies

Flux [E > 100 MeV] (ph/cm?/s)

—_
S
w

-
=)
EN

—
=
o

—
<
o

107

LAT data +—+—
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) (s

10!
Time (s)

10°
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Morlet wavelet scales

Data transformation: Time-series or images

10 |r||J.i\Ml’m';') /l"‘qwﬁ l( ,| {s ‘["'d'l" ”I,W W" |,'| \M\‘\i( 'ﬂ”"‘l i

I ;‘ I | Al W [l
.M ||bH|Hf “ \’ | .'M L“' (. i

A
|

I
‘l

|
|

2 X 102

2
3x10 0 10 20 30 40 50 60

time (sec)

0 2 4 6 8
time (sec)

Simulated data set

Sampling frequency: 2048 Hz
Number of BNS-GRB events: 3000
Train/Validation/Test set: 70%, 10%, 20%
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https://github.com/OverLordGoldDragon/ssqueezepy/
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The deep network

2-D CNN for GW time-frequency:
5 convolutional layers with (3,3)
kernels and 64, 32, 16, 16, 32 filters.
Max pooling (2,2) after convolutional
layer

1-D CNN for GRB light curve:
3 convolutional layers with kernels 5,
3, 3and 80, 40, 40 filters
Max pooling of 2 after convolutional
layer

Concatenate

-

[IIIII---IIIII

Redshift

Flattening + Concatenation + FC
layer with linear activation

RelLU activation function in CNN
Adam optimizer

batch size: 16

Number of training epochs: 100

https://doi.org/10.3390/universe7110394
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MMML for GW-GRB results
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Wavejil=:

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ’

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Future E Trust-IT Services

communicating to markets

Wavefier: a framework for multi-
messenger astrophysics

Elena Cuoco, Alberto less, Filip Morawski, Barbara Patricelli, sara vallero, Emanuel Marzini,
Alessandro Petrocelli, Alessandro Staniscia.
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https://zenodo.org/records/3356656 https://wavefier.github.io/wavefier/

Wavefier: A framework for multi-messenger

WAVEFIER aims to set up a framework for analysis of different types of astrophysical data, paving the way to real-time Multi-
Messenger astronomy studies. This is done leveraging the newest available software technologies.

KEY POINTS

e Setup a prototype for a real time and offline pipeline for the detection and analysis of transient signals and
their automatic classification.

* Best practice for software management.

e Software architecture solutions to prototype a scalable pipeline for big data analysis in GW context.
¢ Interoperability and access to data and services.

* ICT services supporting research infrastructures.

e Use of data in network infrastructures and service.

IN COLLABORATION WITH:

»

3 Trust-IT Services

Elena Cuoco, Emanuel Marzini, Filip Morawski, Alessandro Petrocelli, & Alessandro Staniscia. (2019). communicating to markets

A prototype for a real time pipeline for the detection of transient signals and their automatic —
classification (1.0). Zenodo. https://doi.org/10.5281/zen0d0.3356656 awfi
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Wavefier GOAL
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WAVEFIER: Fast Radio Burst and Gamma ray bursts

Successfully tested attaching to
NASA GCN notices alerts for GRB
from Fermi and INTEGRAL via Kafka.
Successfully imported FRB CHIME
and Fermi LAT catalog data in .fits
format.

Grafana dashboard for FRB data
visualization.

Alberto less

B8 test FRB dashboard -

Peak Flux histogram

A. less, G. Principe

58.4k

58.45k 58.5k 58.55k

Modified Julian Date (MJD)

58.6k
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What’s next?

@ ‘ ‘ Open Science Clusters’ Action

00

for Research & Society

Wavefier in production
(thanks to ACME and Test on new simulation

Preparing more and
more ML based

Merger of 3 and more
messenger (open or
simulated data)

OSCARS project) on data for ET
computing center

pipeline for O5 or 3°
generation detector

Thank you for your attention
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