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PART A. BINARY BLACK HOLE MERGERS
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TOTAL NUMBER OF DETECTIONS BY LVK COLLABORATION IN 2015-2025

01+02+03 =90, O4a* =81, 04b* = 105, O4c* = 14, Total = 290 .
300 1 * O4a, O4b, and O4c entries are preliminary candidates found online. |_|GO-V| rgo-KAG RA (LVK)
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NEXT-GENERATION DETECTORS

osmic Explore

.
next-generation gravitational-wave observatories

~ . Einstein Telescope
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EXPECTED NUMBER OF DETECTIONS
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MACHINE LEARNING IN GRAVITATIONAL WAVE ASTRONOMY
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GRAVITATIONAL WAVE DETECTION

PHYSICAL REVIEW D 108, 024022 (2023)

Deep residual networks for gravitational wave detection

Paraskevi Nousi®,' Alexandra E. Koloniari,” Nikolaos Passalis,' Panagiotis Iosif®,
. . £ 2 e 1
Nikolaos Stergioulas®,” and Anastasios Tefas

1Departmem‘ of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
‘Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

® (Received 17 December 2022; accepted 14 June 2023; published 11 July 2023)
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Architecture:

e 54-layer Resnet-1D

e Deep Adaptive Input Normalization

e SNR-based Curriculum Learning

e 30x faster than PyCBC (using a single GPU card)
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Architecture:

e 54-layer Resnet-1D

e Deep Adaptive Input Normalization

e SNR-based Curriculum Learning

e 30x faster than PyCBC (using a single GPU card)

Training: 1-second segments @2kHz of BBH injections with IMRPhenomXPHM
in real O3 noise from L1 and H1

Mass range: Mo < M < 50Mg
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Architecture:

e 54-layer Resnet-1D

e Deep Adaptive Input Normalization

e SNR-based Curriculum Learning

e 30x faster than PyCBC (using a single GPU card)

Training: 1-second segments @2kHz of BBH injections with IMRPhenomXPHM
in real O3 noise from L1 and H1

Mass range: Mo < M < 50Mg

Leading algorithm (Virgo-AUTH) in the 1st ML GW search challenge in the most
demanding dataset.

https://github.com/gwastro/ml-mock-data-challenge-1
16



NETWORKARCHITECTURE OF ARES-GW

1-D ResNet-54 (27 residual blocks with 2 convolutional layers each and skip connections)!

f1(x) fo(x) f26(x)

‘ :}]\»@» . :\}j\»@» S . /"\\”@* _’>”>* < 12— R

x
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|

* Residual blocks with skip connections: g(x) = f(x) +h(x) oo e Sme s
* h(x) = x or a strided convolutional layer 1 16 / 8 x 2048
o : L 2 16 16 x 1024
After each convolutional layer: batch normalization + 1 3 v 16 x 1024
- - 2 32 32 %512
RelLU activation 1 64 / 32 x 512
* Mini-batch size of 400 segments : . ; o e
* Adam optimizer for back propagation ; ” , RO
®* Objective function = regularized binary cross entropy : o Sop
3 16 32 x 64




NETWORKARCHITECTURE OF ARES-GW

1-D ResNet-54 (27 residual blocks with 2 convolutional layers each and skip connections)!

f4(x) fa(x) fog(X)
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* Residual blocks with skip connections: g die
* h(x) = x or a strided convolutional layer Gra
* After each convolutional layer: batch nori= mu

nt p\’Ob e ST
ch dee Sus

v 16 x 1024

ReLU activation ? 6 / e

* Mini-batch size of 400 segments : - Y o e
* Adam optimizer for back propagation : o , RO
* Objective function = regularized binary cross entropy : o b
3 16 32 x 64
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NETWORKARCHITECTURE OF ARES-GW

1-D ResNet-54 (27 residual blocks with 2 convolutional layers each and skip connections)!

f4(x) fa(x) fag(X)
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* Residual blocks with skip connections: g

* h(x) = x or a strided convolutional layer

* After each convolutional layer: batch nori= mu
RelLU activation

* Mini-batch size of 400 segments

* Adam optimizer for back propagatiorjy| =P,
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ADAPTIVE INPUT NORMALIZATION

Deep Adaptive Input Normalization (DAIN) (Passalis et al. 2019)

Is applied during training - weights Wa, Wb, Wc are learnable and adapt to input data!

Normalized
Input Data Data
X X %
W a | W b wc
" Adaptive | " Adaptive ~ Adaptive
—>  Shifting —> —>» Scaling —> —> Gating —>
| Layer /' H Layer | - Layer ,
Y
.
Summary Summary | Summary
Extractor Extractor ~ Extractor DL Model
a b c

20



ARESGW ON GITHUB

https://github.com/vivinousi/gw-detection-deep-learning

H vivinousi / gw-detection-deep-learning Public L) Notifications % Fork 2 W Star 22

<> Code () Issues 9 Pullrequests () Actions [J Projects (@ Security |~ Insights

¥ master ~ ¥ 1Branch  Tags Q Gotofile <> Code ~ About

Gravitational wave detection in real noise

ﬂ vivinousi readme update dde2791- 2 years ago  \%) 8 Commits timeseries using deep residual neural
networks
B8 doc readme update 2 years ago
0 Readme
- - N :
¥ modules training code initial commit 2 years ago % Avache-2.0license
0 trained_models training code initial commit 2 years ago N Activity
. Yr 22 stars
0 utils training code initial commit 2 years ago
&® 7 watching
[ LICENSE Initial commit 2 years ago % 2 forks
R t it
D README.md readme update 2 years ago CROELIeROSIONF
D run_on_test.sh training code initial commit 2 years ago Releases
[9 test.py training code initial commit 2 years ago No releases published
[ test_challenge_model.py training code initial commit 2 years ago
Packages
train. readme update 2 years ago
D by P y 9 No packages published
[ README 5 Apache-2.0 license = Languages

|
® Python 98.4% Shell 1.6%

AResGW: Augmentation and RESidual networks for
Gravitational Wave detection

Gravitational wave detection in real noise timeseries using deep residual neural networks.

This repository contains the method submitted by our team, Virgo-AUTH, to the MLGWSC competition. Our
method contains the following components: 2 1



ENHANCED ARESGW ON REAL O3 DATA
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New gravitational wave discoveries enabled by machine learning
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MAIN ENHANCEMENTS:

1) Training on low-pass filtered data

(20+1024 Hz)
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MAIN ENHANCEMENTS:

1) Training on low-pass filtered data
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MAIN ENHANCEMENTS:

1) Training on low-pass filtered data
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3) Application of noise filters to reduce
background FAR.

ARESGW
Rs > 2 Low-Pass Rs <2

(350 Hz)

l [Rs]

L(Z\(I)VOP::)S Rs'> 3.1 IRs - Rs'l <
(RS threshold(Rs)
l Rs'< 3.1 no l yes A/
no S PR ‘ -
Rs>3.5 Sqlg@tlye: Default Low

Passband Pass
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Low-Pass Rs"> 2 o
(500 H2) » backgrouynd (I
[Rs"]
Rs"<2 yes
no
Rs > 3.5
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ASTROPHYSICAL PROBABILITY

p_astro is calculated as Pastro = b(R.) + F(R)
where the background and foreground b(R,) = db f(R,) = ar
differential rates are dR; dRs
N N
The cumulative distribution of the . (1 T erf(ﬁ)) B (1 T erf( 2 ))
. . B(z) =
O3 background is modeled analytically as ON _ (1 N erf( Bt ))N
V2
40:
35
30
25
= 20-; Default Low Pass
15 - Model (¢=1.95,N=3)
Selective Noise Rejection
101 —— Model (¢=2.2,N=3)
5_3 Selective Passband
] —— Model (¢=1.35,N=0.5)
o-~——-+———7 44—

Rs 26



ASTROPHYSICAL PROBABILITY

Analytic model of cumulative foreground distribution: F(z) =a(x — wmin)b

Coefficient b determined through injections in O3 noise:

°P00 Default Low Pass 40- Default Low Pass
6000 - Model (b=0.616) | Model (6=0.616)
<. 4000 ™ 20-
2000- —
8000- <:EE£EEE;> 0

40 - Selective Noise Rejection

Selective Noise Rejection |
| —— Model ()=0.802)

6000-; —— Model (h=0.802)

= 4000 -
2000 -

; Injections
8000 -

O3 events
_ Selective Passband _ Selective Passband
600071 — Model (»=0.830) | —— Model (»=0.830)
= 4000 - < 50 -
2000 - ~
. //Injectlons glefrr 03 events
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
R R
S
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NEW GW DETECTIONS WITH AresGW IN O3 DATA

AresGW detects 42 out of 51 known O3 events (most sensitive pipeline in this mass
range)

We found 8 new gravitational wave candidates with pastro > 50% (3 pastro >99%).

O ~J O Ot » LW N =

TABLE VII: New candidate events identified by AresGW.

Event Name

GW190511.125545
GW190614.134749
GW190607_-083827
GW190904.104631
GW190523_085933
GW200208-211609
GW190705-164632
GW190426_082124

GPS Time
(s)
1241614563.77
1244555287.93
1243931925.99
1251629209.01
1242637191.44
1265231787.68
1246380410.88
1240302101.93

1.00
0.99
0.99
0.72
0.68
0.55
0.01
0.50

0.27
4.6
6.5

14
20
18
49
20

9.54
5.80
8.99
4.35
6.60
4.0
0.82
3.91

Time delay
(s)
0.0027
0.0012
0.0056
0.0002
0.0054
0.0063
0.0103
0.0007

1.16
0.65
0.90
0.38
0.75
0.69
1.05
1.48

1.46
0.80
0.48
0.71
1.39
0.98
0.98
0.53

Selective Passband
Selective Passband
Selective Noise Rejection
Selective Passband
Selective Noise Rejection
Selective Passband
Default Low-Pass®
Selective Passband
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NEW GW DETECTIONS WITH AresGW IN O3 DATA

AresGW detects 42 out of 51 known O3 events (most sensitive pipeline in this mass
range)

We found 8 new gravitational wave candidates with pastro > 50% (3 pastro >99%).

RIS

o J OO Ot s W N =

TABLE VII: New candidate events identified by AresGW.

GPS Time
(s)

GW190511_125545 | 124161456
GW190614 134246

GW190607_0? \:\\’S’C
GW190904_1C S\ng a M
GW190523_08% 12637191.44
GW200208_211609 | 1265231787.68
GW190705_164632 | 1246380410.88
GW 190426082124 | 1240302101.93

Event Name

Pastro

0.68
0.55
0.01
0.50

).80
0.48
0.71
1.39
0.98
0.98
0.53

7

\»\t\'\\"\”\ Selective Passband

Selective Passband
Selective Noise Rejection
Selective Passband
Selective Noise Rejection
Selective Passband
Default Low-Pass™
Selective Passband
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ARESGW NEW CANDIDATE EVENTS

Q@ = 10.88, p = 0.121 @ = 10.69, p = 0.163

p—
o
e

—

b

OO0

Frequency [Hz]
Frequency [Hz]

0.625 0.650 0.675 0.700 0.725 0.750 0.775 ().800 0.300 0.825 0.875 0.900 0.925 00.950 0.975
GPS Time [g] +1.241614563 x 10 GPS Time [h] +1.244555287 x 10?

Q = 10.64, p = 0.103 Q = 6.33, p = 0.061

\

Frequenc

5.925 5.950 5.975 6.000 6.025 8.875 8.900 8.925 8.950 8.975 9.000 0.025 9.050
GPS Time [s] +1.24393192 x 10° GPS Time 3 +1.2516292 x 10°




ARESGW NEW CANDIDATE EVENTS

Q= 1214, p = 0.105

—_
DO
":f«‘

)

Frequency [Hz|

Frequenc

0.300 0.325 0.350 0.375 0.400 0.425 0.450 0.475 0.550 0.575 0.600 0.625 0.650 0.675 0.700 0.725
GPS Time [ +1.242637191 x 10° GPS Time [g] +1.265231787 x 10°

Q@ =8.92, p = 0.105 I &= 1002, p&= 0.155

'\
\

Frequenc
Frequenc

0.750 0.800 0.825 0.850 0.875 0.900 0.925 0.800 0.825 0.875 0.900 0.925 0.950 0.975
GPS Time [s] +1.24638041 x 10° GPS Time |3 +1.240302101 x 10°




PART B.
BINARY NEUTRON STAR POST-MERGER PHASE

32



INTERNATIONAL GRAVITATIONAL-WAVE OBSERVATORY NETWORK (IGWN)
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POST-MERGER PHASE IN BNS MERGERS

Time domain: three distinct phases of the GW signal:

inspiral, merger and post-merger oscillations.

h, [r/M,..]

h(f) /2 [HzV7]

10 15 20 25 30 35
t (ms)

Stergioulas et al. (2011) | 35



POST-MERGER PHASE IN BNS MERGERS

Time domain: three distinct phases of the GW signal:

inspiral, merger and post-merger oscillations.
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POST-MERGER PHASE IN BNS MERGERS

Time domain: three distinct phases of the GW signal:

inspiral, merger and post-merger oscillations.

h, [r/M...]

h(f) /2 [HzV7]

10 15 20 25 30 35
t (ms)

Stergioulas et al. (2011) | 37



POST-MERGER PHASE IN BNS MERGERS

Time domain: three distinct phases of the GW signal: Frequency domain:

inspiral, merger and post-merger oscillations. fpeak : I=m=2 fundamental mode.
f2-0, fo+0 : nonlinear combination tones

-22 1 T 1 | AN U A N L RN I DN B N NN B N B L N B | T
- @40Mpc -
.............. aL[GO I
= T :
2 ST R | | S (R e, :
S 2 T & 00000 VN et ET
ot = Y
= o
(\ =
_25 L1 1 1 | L1 1 1 | L1 1 1 | L1 ] A
10 15 20 25 30 35 0 1 2 3 4 5
t (ms) f (kHz)

Stergioulas et al. (2011) 38



POST-MERGER PHASE IN BNS MERGERS

Orbiting spiral arms also lead to a distinct frequency fspiral

10E+15

10E+14

10E+13

(km)

10E412

10E+11

1 0E+10:

P (g cem” )

2
f [kHZ]

Bauswein & Stergioulas (2015) 39



CLASSIFICATION OF POST-MERGER WAVEFORMS

Bauswein & Stergioulas (2015)

/// Vretinaris, Bauswein & Stergioulas (2020)
Type II -~
e Type I
f>.0 stronger than fgpiral
SLy
BHBIp f,.o comparable to fspiral
2H
MPA1 fspirat Stronger than .o
- LS220
DD Type Ib:
1|8 (close to Mihyres)

R[Ro]

Vretinaris et al. (2025)
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EMPIRICAL RELATIONS OF POST-MERGER FREQUENCIES

Foeak Menirp = 1.392 — 0.108 Mepir, + 51.70A /2
fo—oMepip = 0.558 — 0.406 Mcpir, + 48.696A /2
fopiral Mehirp = 1.2 — 0.442 M cpir, + 45.819A71/2
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Foeak Menirp = 1.392 — 0.108 Mepir, + 51.70A /2
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Vretinaris et al. (2025)

inspiral




ACCELERATION OF POST-MERGER INFERENCE

13 numerical waveforms from the CoRe database (Gonzalez et al. 2022)

+2 numerical waveforms from Soultanis, Bauswein & Stergioulas (2022)

Label EOS | q |(Average) Mass|References _
THC:0036:R03| SLy |[1.0 1.350 47) 1707 ?
THC:0019:R05 | LS220 |1.0 1.350 [101, 102] = 1.65¢
BAM:0088:R01| MS1b |1.0 1.500 99, 100] = 160! o
THC:0002:R01 |BHBIp|1.0 1.300 101, 102] 2 155l e
THC:0011:R01| DD2 [1.0 1.250 (101, 102] g o
BAM:0070:R01| MS1b |1.0 1.375 103] > 1.90r ¢
BAM:0065:R03 | MS1b [1.0 1.350 [104] c;e 1.451
THC:0010:R01 | DD2 [1.0 1.200 101, 102] A 1.40F
BAM:0002:R02| 2H [1.0 1.350 104 © 1.35: 4 o by o o
BAM:0053:R01| H4 |[1.5 1.375 105 S
BAM:0124:-R01| SLy |15 1.250 103 ¢ 1.30r ¢
BAM:0090:R02 | MS1b |1.0 1.600 99, 100] < 1.25¢ & °
BAM:0092:R02| MS1b [1.0 1.700 99, 100] 1.20® | | | | | o |
Soultanis et al. | MPA1 |1.0 1.200 67] N N Q S
TR - — QQ ’\)ﬂ "y ') NS )
Soultanis et al. | MPA1 (1.0 1.550 67] @2?' S & /\%‘b <$§7 QQ
Extension of the set of 9 waveforms used in previous Equation of State

work by Easter et al. (2020)
Vretinaris S., Vretinaris G., Mermigkas, Karamanis, Stergioulas (2025) 43



INJECTIONS IN 3-DETECTOR NETWORK

Waveforms are injected in 3-detector HLV network at design sensitivity, using BILBY (Ashton et al. 2019)

We choose post-merger SNR of 8, 16 and 50, to simulate detection by 3G network (ET/CE) at distances as
close as 200Mpc.

x 10741

4.9+
0.0
—4.9T

L1

401 || —— H1

i { | ) f | 2
| 0 | | y 1 \ B A
g ! | / i / Wy 1) ) AURY S e
| § \ o A4 g wwe

—4.9}

Strain

4.97 — V1

0.0 I

—4.9}

0.00 0.01 0.02 0.03 0.04 0.05
Time [s] 44




ANALYTIC BNS POST-MERGER WAVEFORM MODELS

Several analytic models exist in the time- and frequency-domains.

Here, we extend the analytic model of Easter et al. (2020) as follows:

h(@,t) = h.(0,t) —ih.(0,t)
4
:E i1(0,t) —ih; . (0,1)]
;-
hi.(0,t) = A;exp = | cos 27fit (14 ajt) + ;]
. 4

45



ANALYTIC BNS POST-MERGER WAVEFORM MODELS

Several analytic models exist in the time- and frequency-domains.

Here, we extend the analytic model of Easter et al. (2020) as follows:

h(0,t) = h.(0,t) —ih(0,t)
4
=) [+ (6,t) —ih; . (6,1)]
j=1
-
hj, (9, t) = Aj exp T COS [27Tfjt (]. + ajt) - ¢]]
J_
Intrinsic parameters 0={A,T; fi,a;,v;} for je|l,4

h; x(0,t) is obtained by applying a t/2 phase shift to h; .+(0,t)

* We have added a 4th oscillator at high frequencies > fpeak (e.g. f2+0)

* Amplitudes A; are free parameters

46



INFORMED PRIORS

In Easter et al. (2020) flat priors in a wide frequency range of 1-5 kHz for every oscillator were used.

* Here, we take advantage of the empirical relations to set Gaussian priorsin a narrow frequency
range around each expected frequency.

* | addition, the priors differ, according to the type of the post-merger waveform:

o Type I: Gaussian priors, N (fa_g,02) for fo_¢ and
uniform priors U(1,5)kHz| for fspiral-

o Type II: Gaussian priors, N (fa—_g,0?) for fo_g and
N(fSpiI‘&l) 02) for fspiral-

e Type III: Gaussian priors, N (fspiral, ) for fspiral
and uniform priors U(1,5)[kHz] for fy_o.

where g = 3 x max error of empirical relations. For fpeak: Gaussian ; for fa: flatin [fpeak+0.3kHz, 5
kHz].

priors for Aj: uniform in [-24, -19]
priors for aj: uniform in [-6.4, 6.4]
priors for remaining parameters: as in Easter et al. (2020) 4/



EOS BHBIlp 1.3+1.3, SNR =50

using flat priors

fi = 198527 2101

POSTERIOR DISTRIBUTIONS

using informed priors (through empirical relations)

fpeak = 24549175

- fi = 1887.82+974
fo = 192675132108
Q
S
TN f =:136133t;§2:§?,
3
Q 1 5C
o f@ fs = 2451.82140cs
> l |
Q>
2 ©
D
® [ :
%%Q @ 1 L@ . @ | ,
S N N S N Q
Q N\ Q Q N\ N\ N Q
S W 4 oF
fi f2 f3

fhigh = 3861. 77f;;315§
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POCOMC: PRECONDITIONED MONTE CARLO SAMPLER

Sequential Monte Carlo + Normalizing Flow Preconditioning:

pocoMC

https://github.com/minaskar/pocomc

= Preconditioned Monte Carlo Sampling (Karamanis et al. 2022)

PMC targets an annealed version of the posterior, with density 1.0] — preconditioned Monte Carla
given by —— Nested Sampling

&
o)

£
o

p:(0 | d) < LP(0 | d)7(O)

Speedu P / nparticles
o
5

where B: a parameter (inverse temperature).

We use 2000 particles that transition from the prior (B0 = 0) to -
the posterior distribution (Br = 1), through a sequence of 0.0 02 04 06 08 10
reweighing, resampling and mutation steps. s s

PocoMC is highly parallelizable

50


https://github.com/minaskar/pocomc

NORMALIZING FLOWS

Base density Transformed density

/’/ \ fo, 00 foy
[ 4

, Normalizing Flow

ply|hy(x))

After each iteration, a normalizing flow transforms the distribution to a simpler one (almost
Gaussian), decorrelating the parameters. This allows for a much faster sampling.

On same number of CPUs: pocoMC is ~10 times faster than dynesty (which uses nested sampling).
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RECONSTRUCTION IN THE FREQUENCY DOMAIN

EOS MPA1, 1.55041.550, SNR=50

’ —— Median
' F =0.95751 —— Numerical Waveform
1000 2000 3000 4000

Frequency [Hz]

107

EOS MPAL1, 1.550+1.550, SNR=50

Type Ib

rexids J[

1 N

| LN
| p—
1

Maximum
Likelihood

f peak

fsec.l

fsec.2

f post-peak

1000

2000 3000 4000
Frequency [Hz]
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RECONSTRUCTION IN THE FREQUENCY DOMAIN

EOS BHBIp, 1.30041.300, SNR=50 EOS BHBIp, 1.300+1.300, SNR=50
' Type 11 [ : EEH' - Type II
102 < I
N’ N’ g ~ Maximum
|§ am Likelihood
e b 10—23 E fpeak
:‘ ':‘ : fsec.l
Q Q E fsec.2
Zé 2 J E fpost-peak
1024 dab
—— Median E
F 0 96336 | —— Numerical Waveform | i |
10—25 1 ! ) 1 - I . 10—25 1 1 i 1 | 1 ; 1
1000 2000 3000 4000 1000 2000 3000 4000
Frequency [Hz| Frequency [Hz]
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APPLICATION OF MACHINE LEARNING TO THE POST-MERGER PHASE

Problem: Only O(200) substantially different numerical BNS simulations are currently available.
Solution: Construct surrogate model of post-merger GWs as function of e.g. M, q, EOS(A)

Time domain surrogate model using
K-Nearest Neighbor (KNN) regression:

— simulation =~ —— KNNAPKS
" 41 [Mtot — 9 798 M@]
(F =0.995]
0.2f A * a
Pay 0.0-“,
e |
—0.4t

Soultanis et al. (2025) 54



APPLICATION OF MACHINE LEARNING TO THE POST-MERGER PHASE

Problem: Only O(200) substantially different numerical BNS simulations are currently available.

Solution: Construct surrogate model of post-merger GWs as function of e.g. M, g, EOS(A)

Time domain surrogate model using Frequency domain surrogate model using
K-Nearest Neighbor (KNN) regression: Artificial Neural Networks (ANN) regression:
— simulation =~ —— KNNAPKS
r =2 -
0.4} Mot = 2.728 Mo | £ — Original
[ = 0.995] EN — Predicted
‘ T -225
0.2 A * =
‘ g
) 8.
< 0.0r é:a -23
0.2} ' 2 235
P,
—0.4r EDD —24 ) ‘“J
t [ms] Frequency (Hz

Soultanis et al. (2025) Pesios et al. (2024) 55



ANN REGRESSION IN THE FREQUENCY DOMAIN

Expanded training set: 87 equal-mass models using 14 different EOS

Surrogate model now depends on both mass and tidal deformability.

1 15 2 25 3 135 4
(
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ANN REGRESSION IN THE FREQUENCY DOMAIN

Expanded training set: 87 equal-mass models using 14 different EOS

Surrogate model now depends on both mass and tidal deformability.

(!
'l’;\ 'j \}‘.

.‘,\‘

~ Ay
' ) )\\\\ie 'l”\t'\’\ "“ ‘L
4 3.5
° ° . « o . T M . 4ﬂ11 ﬂo
Partial alighment of spectra using empirical relation: fpeak(Kz’ ) =4—In R~
2

Pesios, Koutalios, Kugiumtzis, Stergioulas (2024)
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ANN SURROGATE IN THE FREQUENCY DOMAIN

Input features:

1) Mass, 2) tidal coupling constant, 3) dR/dM

Prediction:

Magnitude of GW spectrum (1-4 kHz).

Pesios et al. (2024)
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ANN SURROGATE IN THE FREQUENCY DOMAIN

Input features: 4-layer feed-forward ANN

1) Mass, 2) tidal coupling constant, 3) dR/dM Added Gaussian noise and dropout layers

Prediction: Adam optimizer
Magnitude of GW spectrum (1-4 kHz). Layer Type Shape Activation Params
1 Gaussian noise (0.1) (None, 3) 0
2 Dense (None, 200)  Linear 800
3 Gaussian noise (0.05) (None, 200) 0
4 Dropout (0.15) (None, 200) .. 0
5 Dense (None, 400) Sigmoid 80400
6 Gaussian noise (0.1)  (None, 400) 0
7 Dropout (0.15) (None, 400) ‘e 0
8 Dense (None, 400) Sigmoid 160400
9 Gaussian noise (0.1)  (None, 400) 0
10 Dropout (0.05) (None, 400) .. 0
11 Dense (None, 370)  Linear 148370

Pesios et al. (2024)
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ANN SURROGATE IN THE FREQUENCY DOMAIN

Input features: 4-layer feed-forward ANN

1) Mass, 2) tidal coupling constant, 3) dR/dM Added Gaussian noise and dropout layers

Prediction: Adam optimizer
Magnitude of GW spectrum (1-4 kHz). Layer Type Shape Activation Params
&= ;\ E———— 1 Gaussian noise (0.1) (None, 3) ce 0
i 3 valigation ‘oss 2 Dense (None, 200)  Linear 800
} 3 Gaussian noise (0.05) (None, 200) ce 0
b 4 Dropout (0.15) (None, 200) - 0
) 1 5 Dense (None, 400) Sigmoid 80400
g 6 Gaussian noise (0.1)  (None, 400) . 0
0'9-5 7 Dropout (0.15) (None, 400) e 0
0.8 8 Dense (None, 400) Sigmoid 160400
; 7_5 9 Gaussian noise (0.1)  (None, 400) - 0
N “JV\/ 10 Dropout (0.05) (None, 400) ce 0
010 20 30 40 50 11 Dense (None, 370)  Linear 148370
Epochs

Pesios et al. (2024) 60



ANN SURROGATE IN THE FREQUENCY DOMAIN

Typical examples of predicted magnitudes of GW spectra FF = O = overlap
Impact of uncertainty in empirical relation offset by re-calibration of spectra.

ANN outperforms multivariate linear regression.

ALF2, M12500, FF: 0.971 APR4, M12500, FF: 0.94 GNH3, M12500, FF: 0.862
= || - I | g 1
223 Il 22 ] = 22 ] '
. [ . | .
~ 22,51 22,5 3 % ~ 225 1
233 -23 : 23 1
- - f 1 ] il
- 23.5 4 -23.5 1 - 23.5 -
: . 1 N :
-24 < -24 & : : 24 3
1 15 2 25 3 35 4 1 15 2 25 3 35 4 1 15 2 25 3 35 4
(1cHz) (cHz) (1cH)

Pesios et al. (2024) 61



PART C.
NEUTRON STAR MODELS IN ALTERNATIVE
THEORIES OF GRAVITY

62



HIGH MASS NEUTRON STARS?

What was the nature of the lighter component in GW190814?

: I N
s Y Vet 15051
¥ | I | ] 716Hz
] I 11 I max
6 - | HERL
1 ! 11 [

5 : = b i)
N | | Neutron/iSe Star
= 4 - I | | AL

5 : fio| KL Fgriole =

3 . I : o | "ol

s i * Heaviest NS?

; N i * Fastest rotating NS?
1 - I I . |

5 i AN * Lightest BH?

1.8 2.0 2.2 2.4 2.6 2.8

Biswas, Nandi, Char, Bose, Stergioulas (2021)
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HIGH MASS NEUTRON STARS?

What was the nature of the lighter component in GW190814?

8 1 : ” {— (m3)
] | I f\ J— g(Mmax) GCW1903814
i : | — mye
i i
5 - | |
w | | Neutron/is
= 4 : |
o : * Heaviest NS?
- N\ : -
g N : * Fastest rotating NS?
1 . | i ° L' .
: | LY ichtest BH?
o[ — —/ S N e S S —_— g
1.8 2.0 2.2 2.4 2.6 2.8

Biswas, Nandi, Char, Bose, Stergioulas (2021)

Another possibility: if the correct theory of gravity is not GR, then heavier NS might exist!

How can this degeneracy be resolved?
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NS IN 4D EINSTEIN-GAUSS-BONNET GRAVITY

We consider the action

1

§= o / d'z\/—g{R + a[¢G + 4G, V*$V"$ — 4(V$)’Té + 2(V$)*] } + Sa

where k = 871G /c*,G = R* — 4R,,R" + R,,,, R""° isthe Gauss-Bonnet scalar and Sy, is the matter
Lagrangian.

This theory possesses an exact vacuum solution describing nonrotating, static black holes with line element

ds® = —h(r)dt* 4 0 - r? dO?
where
h(r) = f(r) =14 ;i (1 — \/1 | 8‘;‘?{”) (M ->ADM mass)
and the shift-symmetric scalar field is
= [dr \f/}l

Charmousis, Lehebel, Smyrniotis, Stergioulas (2022) ©>



SEQUENCES OF EQUILIBRIUM MODELS

For the SLy EOS, we show representative cases of sequences of NS equilibrium models (solid lines)
and BHs (dashed lines). For a>0, the NS solutions merge with the minimum mass BH solution.

M (M)

— a = —3 km?
or — a = —1km’
al — a =1 km?

— a = 3 km?
6L — o = 10 km?

— o = 30 km?
i — a = 100 km?
)l — a = 300 km?

— — GR
0
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EOS-GRAVITY DEGENERACY

In this theory, constructing equilibrium sequences for the same EOS, but different a, mimics the effect
of using different EOS in GR.

- -100 —— 100 — 30.0 — 50.0 —— 70.0!
4 —— 0.0 —— 20.0 —— 40.0 —— 60.0
3,75 - . — APR | '
: GR (OC — O) \ ses: EHELE SLy EOS
I "\ —-- DD2 - -
2.50 1 \ || eosAU ol
I . \ eosUuU
2.25 - \ BSK20
- 2 \ \ 1LS220 l
N \ LS375 S——
_2.00 =N 1 ‘ \ —— GS1 ]
o ] - AR ' --- GS2
= : = A\ M ) :
= 2 : \ RS — -~ APR3 ]
L:75 1 i -+ ENG
| YR . GNH3 |
| : 13 lx 4 - H4
1.50 - : 11 L3 \ |
j Mol TN MPATL 5
| S IRV EE Y o |
1.25 - : ! [ 1 i/ —— WFF2 _
- : : e .| | === SFHO !
3 '|} 'y || == M1 - \
1_00_: g I | N |[|..... TMA 1 -
10 11 12 13 14 10 11 12 13 14 15

Radius (km) Radius (km)

Need to use a large number of observations to break the degeneracy!

Liodis, Smyrniotis, Stergioulas (2024) 67



ANN SURROGATE MODELS FOR NUMERICAL SOLUTIONS

EOS collection Surrogate models Network architecture for each EOS
Name Number #
APR 1 fl (EOS, a,pc) —> (M, R) Layer Type fl Type f2
BHBLP 2 Input layer (@, pe) (o, M)
DD2 3 fo(EoS; a, M) — R Hidden layer 1 ~ 25-tanh 25-tanh
eosAU 4 H%dden layer 2  35-relu 35-relu
eosUU 5 Hidden layer 3  25-tanh 25-tanh
BSk20 6 Output layer (M, R) R
LS220 7
L5375 3 Training set for each EOS: 200 (pc) x 51 (a) = 10200 equilibrium models
GS1 9
GS2 10 . (75(2)
APR3 (PP) 11 154
ENG (PP) 12 P
GNH3 (PP) 13 2 38 o
H4 (PP) 14 . 30 &
MPA1 (PP) 15 22 ©
SLy4 (PP) 16 05 14
WFF2 (PP) 17 '6
SFHo 18 2
TM1 19 2710 11 12 13 14 15 P40 10° 101 0.1 10° 10! —10
TMA 20 R [km] pc [103°dyn/cm?] pc [1035dyn/cm?]

Liodis, Smyrniotis, Stergioulas (2024) 68



Training Loss [MSE]

ACCURACY OF f1 ANN SURROGATE MODEL FOR EOS BSk20

Loss function:
Mean Square Error (MSE)

(b)

Testing results [ARE]

1 |

0 100000 200000 300000
lterations

—
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o
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=
<

Accuracy test: [
Absolute Relative Error ARE; = —
m

j=1

0 1000 2000 3000

Testing points

Y — v/

() 1, true

1, true
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10°:

10—5?

ACCURACY OF ANN SURROGATE MODELS FOR ALL EOS

ARE for different EOSs

10—13

10—43

f1 max e > mMmax
f1 mean « > mean
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SPEED-UP ACHIEVED WITH THE ANN SURROGATE MODELS

Speed-up of ANN surrogate model compared to original
numerical code

. ALANN
Atnum
Numerical code (Mean) (Min) (Max)
run time: 1003.5 ms  147.96 ms 18122.4 ms
Output Speed Up Speed Up Speed Up
method (Mean) (Minimum) (Maximum)
model.predict(X) 25.12 0.97 464.56
model (X)) 921.9 95.6 18102.1
model.predict(X)  31295.5 4614.5 565157.2

The achieved speed-up allows for millions of MCMC calls in a
Bayesian inference computation with minimal overhead.
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